Источник - статья А. А. Майорова опубликованная в журнале « В мире НК » № 1(35). 2007.

Введение

В течение более 100 лет, прошедших после открытия рентгеновских лучей, их применение для неразрушающего контроля основывалось на использовании рентгеновской пленки и специальных пленочных систем (промышленная радиография) и позднее – на использовании рентгенооптических преобразователей (промышленная радиоскопия).

По сути, оба эти метода получения изображений являются аналоговыми, хотя в последнее время с развитием компьютерной техники в промышленной радиографии нашла применение техника оцифровки пленочных изображений с целью уменьшения затрат на содержание архивов, а в промышленной радиоскопии стали применять цифровые телевизионные камеры высокого разрешения. Хотя и ту, и другую технологии можно назвать цифровыми (используется компьютер и специальное программное обеспечение), они не будут являться предметом рассмотрения в настоящей статье. Применение оцифровщиков стало обыденным в практике дефектоскопистов (системы ВидеоРен, Унирен, Марс и др.)

Целью настоящей статьи является рассмотрение цифровых технологий, замещающих пленку с требуемым качеством изображения. Мотивацией замены обычно является уменьшение стоимости вследствие уменьшения времен экспозиции и уменьшения стоимости хранения, уменьшения требуемых рабочих площадей и исключения химии из процесса обработки. Такими технологиями являются:

• компьютерная радиография (КР) с «фосфорными» запоминающими пластинами (ЗП) многоразового использования (кавычки означают, что на самом деле в состав запоминающих пластин химический элемент фосфор не входит);
• цифровая радиография (ЦР) с использованием цифровых детекторных систем ЦДС (плоскопанельных и линейных детекторов).

КР начала использоваться около 20 лет назад в медицине для замены пленки и обладает существенными преимуществами перед пленочной технологией:

• не требует фотолабораторий, химикатов, соответствующего персонала;
• каждая пластина может использоваться несколько тысяч раз;
• время экспозиции по сравнению с пленкой в несколько раз меньше;
• изображение архивируется в цифровом виде.

 

Чтобы конкурировать с пленочными системами, в последние годы разработаны высококачественные КР системы, имеющие пространственное разрешение и отношение сигнал/шум, сравнимые при соответствующих дозах облучения с пленочными системами неразрушающего контроля.

Цифровая радиография также была использована в первую очередь для замены пленки в медицине. Разработанные для этой цели ЦДС оказали революционизирующее влияние на радиологическую технику. Эти детекторы позволили развить новые, основанные на компьютерных технологиях, приложения. Эти технологические и алгоритмические разработки оказались применимы также и для использования в НК. Имеются в виду новые технологии калибровки ЦДС, которые позволяют практически полностью избавиться от их собственных шумов. Такие возможности отсутствуют у пленочных систем и систем КР с ЗП. Поэтому ЦДС имеют самый низкий уровень шумов в радиографии и открывают путь к новым приложениям, где требуются чрезвычайно высокие чувствительность и контраст изображения в сочетании с возможностью контроля слабых изменений радиационной толщины.

Чрезвычайно важным являются также экономические преимущества ЦДС перед классической пленочной техникой. Гораздо более быстрый процесс обработки и интерпретации при высоком качестве изображения приводит к существенному выигрышу во времени по сравнению с пленкой и/или другими методами неразрушающего контроля. Целью настоящей статьи является обсуждение возможностей новых цифровых технологий, для чего будет проведено сравнение с возможностями пленочной радиографии. Сравнение начнем с классификации существующих детекторов рентгеновского излучения.

Детекторы рентгеновского излучения

системы получения рентгеновского изображения

На рис. 1 представлена схема, иллюстрирующая основные типы детекторов рентгеновского излучения, применяемых для получения изображения.

Рентгеновская пленка

Рентгеновская пленка до сих пор является наиболее широко используемым в промышленности детектором рентгеновского излучения в силу хорошо отработанной законодательной базы применения во всех отраслях промышленности, существующей инфраструктуры применения (фотолаборатории, оборудование, обученный персонал и т. п.). Однако объемы применения пленки с каждым годом уменьшаются в связи с развитием новых методов регистрации рентгеновских изображений, о которых речь пойдет дальше.

Запоминающие пластины

В компьютерной радиографии для получения изображения вместо пленки применяются специальные гибкие пластины многократного использования. Кассеты с такими пластинами имеют типовые для рентгеновской пленки размеры, например 18 х 24, 18 х 30, 24 х 30, 35 х 43 см, а также аналоги рулонных пленок. Возможна также резка пластин, т. е. считывание и других размеров. Для запоминания изображений в пластине использован слой с фотостимулируемой памятью – сложное химическое соединение. Чаще всего используются соединения типа BaFBrxI1-x:Eu2+.

Цифровые детекторы непрямого преобразования рентгеновского излучения

регистрация рентгеновского излучения Начнем обсуждение с детекторов непрямого преобразования, как наиболее часто используемых на практике. Они отличаются тем, что рентгеновские кванты сначала взаимодействуют со сцинтиллятором с образованием фотонов света, а затем свет преобразуется или сразу в электрический сигнал, как в твердотельных плоскопанельных детекторах, или в поток электронов в рентгеновском электроннооптическом преобразователе (РЭОП), который создает видимое изображение на выходном люминофорном экране. В качестве плоскопанельных детекторов непрямого преобразования чаще всего используются панели на основе аморфного кремния (аSi). В них используются сцинтилляторы из CsI или Gadolinium Oxisulfide, которые преобразуют рентгеновское излучение в видимый свет. Этот свет затем конвертируется в заряд сенсорами из аморфного кремния (рис. 2). Чувствительность детектора со сцинтиллятором из Gadolinium Oxisulfide будет зависеть от толщины покрытия (рис. 2а). Однако при увеличении толщины покрытия из-за рассеяния света ухудшается пространственное разрешение детектора. В какой-то степени от этого недостатка свободны панели с покрытием из CsI (рис. 2 б).

CsI хорошо поглощает рентгеновское излучение, причем в области энергий рентгеновских фотонов, обычно используемых в промышленной дефектоскопии (40 – 300 кэВ), поглощение происходит в основном за счет фотоэффекта (вклад в поглощение за счет эффекта Комптона становится существенным при энергиях выше 300 кэВ). Слой CsI:Na генерирует при поглощении рентгеновского излучения голубой свет, который распространяется по направлению к фотодиодной матрице вдоль монокристаллических острий как по оптоволокну (т. е. без рассеяния).

Ранние эксперименты с аSi показали высокий уровень шума этих панелей. Прогресс в технологии вместе с программными возможностями, позволяющими усреднение по многим кадрам, позволил резко улучшить отношение сигнал/шум. Качество изображений, получаемое сейчас на этих панелях, превышает качество, получаемое на запоминающих пластинах, и приближается к качеству изображения на панелях аSe. Плоскопанельные детекторы

Более того, панели из аSi менее чувствительны к свойствам окружающей среды, что делает возможным их применение в полевых условиях и неконтролируемых приложениях. На рис. 3 в качестве примера показаны фотографии некоторых широко используемых в практике детекторов.

Цифровые детекторы прямого преобразования рентгеновского излучения

В детекторах прямого преобразования при воздействии рентгеновского кванта в толще полупроводника сразу генерируются электронно-дырочные пары. Под действием приложенного напряжения возникает электронный ток, который может быть усилен и с помощью считывающей электроники преобразован в изображение (рис. 4).

схема регистрации рентгеновского излучения

Наиболее распространенными вариантами ЦДС прямого преобразования являются панели на основе аморфного селена (aSe) и монокристаллического теллурида кадмия (CdTe). В первом случае сборка тонкопленочных транзисторов (TFT) покрывается аморфным селеном, что позволяет конвертировать рентгеновское излучение напрямую в цифровой сигнал без использования сцинтилляторов или фосфора. Вследствие отсутствия влияния рассеяния и оптимального отношения сигнал/шум качество изображения достигает качества, характерного для среднезернистой пленки. Ограничением селенового детектора является узкий диапазон рабочих температур. Как для работы, так и при хранении детектор нужно поддерживать в температурном диапазоне 5 – 30 °С для того, чтобы избежать разрушения селенового слоя. Также при высоких энергиях (> 180 кэВ) селен склонен к образованию фантомных изображений.

Все эти ограничения делают возможным применение aSe панелей в очень специфичных приложениях, где можно строго контролировать необходимые для этих панелей условия работы. Детекторная система прямого преобразования на основе CdTe свободна от ряда недостатков системы на основе aSe. Она может работать в гораздо более широком температурном диапазоне при энергиях рентгеновских квантов до 300 кэВ, обладая при этом в несколько раз большей чувствительностью. На рис. 5 показан один из типов детекторов прямого преобразования. плоскопанельный детектор

Технологии формирования и считывания сигналов в ЦДС

Механической основой любого плоскопанельного детектора является стеклянная подложка, на которую устанавливается считывающая электроника.

TFT-технология

TFT (thin film transistors)-технология используется в основном в панелях на базе аморфных кремния или селена. Панели детекторов непрямого преобразования являются типичными сборками фотодио- дов на активной TFT-матрице. Для детек- торов с прямым преобразованием, де- текторный слой располагается прямо на эту матрицу. Матрица TFT-транзисторов представляет собой достаточно простую структуру электронных переключателей (типовая схема для любого типа панелей показана на рис. 6).

технология TFT

Емкость каждого светодиода в исходном состоянии заряжена до напряжения U+. При облучении светом она разряжается: чем больше света, тем меньше остаточный заряд. При считывании TFT транзистор открывается, и емкость снова заряжается через считывающий усилитель до значения U+. Величина заряда измеряется усилителем считывания и в виде напряжения U подается на аналогоцифровой преобразователь.

Панели могут быть очень больших размеров (40 ?40 см). Они имеют не очень высокое разрешение (типичное значение ве- личины пикселя 127 мкм). Отличительной особенностью аморфного кремния является очень высокая радиационная устойчивость, что позволяет применять такие панели при высоких энергиях рентгеновских квантов. Поскольку процесс производства панелей на базе аморфного материала и TFT-технологии требует специфического оборудования и условий производства, такие панели достаточно дороги.

CCD-технология

ССD (coupled charge device)-технология является одной из ведущих для получения высококачественных рентгеновских изображений. В отличие от матричных панелей типа TFT или CMOS, в ССD панелях считывание сигнала происходит путем транспортировки зарядовых пакетов вдоль кремниевой подложки. Преимуществом таких панелей является низкий шум, высокая чувствительность. Обычно в ССD панелях используют оптоволоконные буферные вставки, позволяющие увеличить площадь приемного окна панели и служащие одновременно защитой от радиации. Но даже с таким дополнительным экранированием ССD панели могут работать только при энергиях рентгеновских квантов < 50 кэВ. Как и в случае с аморфным кремнием, их производство требует специальных условий, поэтому они достаточно дороги.

CMOS-технология

CMOS (complementary metal oxide semiconductor) – эта технология, как и TFT с аморфным кремнием, является матричной сборкой. Основным преимуществом этой технологии перед остальными является использование хорошо развитой промышленной базы производства интегральных схем. Уровень шумов CMOS-панелей приблизился к уровню ССD-панелей, динамический диапазон в несколько раз выше. На CMOS-панелях получено самое высокое пространственное разрешение (размер пикселя несколько микрометров). Стоимость таких панелей хотя еще достаточно высока, тем не менее динамично снижается и скоро, на наш взгляд, станет меньше стоимости РЭОП со сравнимыми характеристиками.

Калибровка Цифровых Детекторных систем

Калибровка плоскопанельного детектора (наряду с коррекцией «плохих» пикселей) является одной из важнейших операций, обеспечивающих, как мы увидим в дальнейшем, получение отношения сигнал/шум и контрастной чувствительности, существенно превышающих эти значения для других типов детекторов (рентгеновской пленки и запоминающих пластин). Вполне естественные вариации характеристик сенсоров в панели, неоднородности распределения рентгеновского излучении, также как особенности электроники, будут вызывать некоторые различия сигналов от различных пикселей панели. С помощью калибровки можно полностью скорректировать изображения. Обычно калибровка включает захват изображений при полной (светлопольное изображение), средней (среднепольное изображение) и нулевой (темнопольное изображение) дозовых нагрузках. Темнопольное изображение используется для получения, базового, «темнового» сигнала от детектора, который определяется токами фотодиодов, токами утечки тонкопленочных транзисторов и разницей между различными зарядовыми усилителями, используемыми в считывающей электронике. Светлопольное и среднепольное изображения используются для расчета усиления, или отклика, каждого пикселя, и соответствующего считывающего усилителя.        Одним из источников шума в детекторе является коррелированный линейный шум, который является шумом, присущим одновременно всем пикселям данной строки. Современные программные средства позволяют провести процедуру коррекции этого шума, которая должна приводить к минимизации вариаций вследствие этого шума. Для этого доля сенсоров панели маскируется от сцинтилляционного экрана, и, таким образом, не получает светового сигнала во время рентгеновской экспозиции. Сигнал от этой части панели соотносится с темнопольным изображением, для определения коррекции, которая должна быть внесена в каждую строку. Результирующие калибровочные изображения используются для нормализации отклика пикселей.

Коррекция «плохих» пикселей

Основными типами «плохих» пикселей можно назвать следующие три:

  1. Не усиливающий пиксель, или «мертвый» пиксель. Сигнал от него не зависит от дозы облучения.
  2. Сверхчувствительный пиксель. Значение уровня серого для него болеечем в 1,3 раза превышает среднее по площадке из 21х21 пикселей.
  3. Малочувствительный пиксель. Значение уровня серого для него менее чем в 0,6 раза меньше среднего по площадке из 21х21 пикселей.

Для того, чтобы скорректировать «плохие» пиксели, выявляющиеся в виде плохих строк, используется алгоритм коррекции плохих пикселей. Этот алгоритм усредняет сигналы от соседних пикселей, используя это среднее значение для плохих пикселей. Каждый пиксель имеет 8 ближайших соседних пикселей (за исключением тех, которые находятся на краю сенсорной панели). Если по крайней мере 3 из них считаются хорошими, тогда возможна операция усреднения их для получения значения плохого пикселя. В противном случае плохой пиксель не может быть скорректирован правильно. В качестве примера на рис. 7 приведены два изображения, полученные с помощью плоскопанельного детектора FlashScan 33 (данные компании Юнитест). Слева (рис. 7, а) радиографическое изображение сварного шва (сталь 10 мм, 100 кВ) с характерными непроварами и «плохими» пикселями, проявленными в виде «плохих» строк. Справа (рис. 7,б) то же изображение после интерполяционной корректировки.

Снимок сварного шва на плоскопанельном детекторе

Сравнение качества изображения различных детекторных систем

Весьма важным при контроле изделий, работающих в зонах повышенного риска, например в аэрокосмической и атомной промышленности, является оценка верхнего предела качества изображения, получаемого с помощью новых цифровых технологий. Как уже отмечалось, для ЦДС (плоскопанельных детекторов и линейных детекторов) разработаны методики калибровки и вычитания собственных шумов, позволяющие получить максимально достижимые отношения сигнал/шум для этих приборов. Такая процедура улучшает контрастную чувствительность настолько, что позволяет контролировать изменение 1/1000 радиационной толщины контролируемого материала. В то же время мы знаем, что стандартная пленочная радиография с использованием пленочных систем (со свинцовым экраном или без него) позволяет достичь контраста 1/100 даже с использованием пленочных систем высшего класса (класс «С1» по обще европейскому стандарту EN 584-1 или «специальный» по ASTM E 1815). Компьютерная радиография с использованием фосфорных запоминающих пластин является реальной заменой пленочных технологий даже без дополнительного компьютерного улучшения изображения. Сравнение основано на изучении измеренных значений отношения сигнал шум, пространственного разрешения и сравнения радиографических изображений, как с использованием собственных экспериментальных данных, так и с привлечением данных из других источников.
Основные параметры качества изображения

Радиографическое изображение в соответствии с терминологией описывается следующими главными параметрами качества изображения:

  1. Базовое пространственное разрешение SRb, измеренное с помощью эталона с двойной проволокой согласно стандарту EN 462-5 и равное половине зарегистрированной не резкости изображения или эффективному размеру пикселя. Иногда пользуются понятием Разрешающая способность, которая определяется из зависимости контраста соседних объектов от расстояния их разделяющего. Эта зависимость называется модуляционной передаточной функцией (MTF) или контрастной передаточной функцией. Величина обратная расстоянию, разделяющему соседние объекты, называется Пространственной частотой и измеряется, по аналогии с пленкой, в парах линий/мм.
  2. Нерезкость изображения определяется геометрической нерезкостью, деленной на увеличение (проекционная нерезкость) и нерезкостью детектора описываемой базовым пространственным разрешением SRb (равным половине нерезкости детектора).
  3. Отношение сигнал/шум SNR. Детектор характеризуется нормированным отношением сигнал/шум SNRnorm как функции условий экспозиции (экспозиционной дозы и радиационного качества). Нормировка измеренного отношения сигнал/шум на базовое пространственное разрешение необходима, поскольку измеренное значение отношения сигнал/шум увеличивается как квадратный корень от площади детектирующих пикселей (результат статистики Пуассона для рентгеновских фотонов).
  4. Отношение контраст/шум CNR. В общем случае CNR зависит от отношения сигнал/шум детектора и эффективного коэффициента поглощения материала.
  5. Чувствительность детектирования (контрастная чувствительность Сs = 1/CNR, где CNR есть отношение контраст/шум) небольшого изменения радиационной толщины объекта Δw (происшедшей из-за наличия дефекта внутри объекта) определяется отношением контраста (изменения интенсивности сигнала ΔI) к уровню шума изображения (стандартное отклонение от I). CNR для данного Δw может быть рассчитано из SNR (отношения сигнал/шум) изображения с учетом коэффициента поглощения μ и коэффициента рассеяния k (равного отношению интенсивностей рассеянного и первичного излучения).
  6. Динамический диапазон (диапазон радиационных толщин объекта, доступных анализу на одном и том же изображении). Поскольку для пленок эта величина фиксирована (ограничена диапазоном оптических плотностей 2 – 4.5 и μэфф), то она не считается параметром для пленочной радиографии, учитываемым в стандартах. В то же время большой динамический диапазон ЦДС в ряде практических приложений может иметь решающее значение при выборе детектора.

В работе проведен комплекс измерений по определению качества радиографических изображений, получаемых с помощью пленочных NDT систем, систем компьютерной радиографии и цифровых детекторных систем. Для демонстрации получаемого с разными детекторами качества изображения использовался один и тот же стандартный образец. Это была 8 мм стальная пластина со сварным швом с 2 мм усилением, содержащим все типовые дефекты.
Качество изображения, достижимое с помощью пленочных систем.
Показано, что SNRnorm зависит от класса пленочной системы, но имеет предельное значение (см. таблицу 1).

Система компьютерной радиографии.

Минимальное значение 43 (класс С6 при D-D =2, рассчитанная доза 2 мГр), а максимальное 250 (лучший класс С1, D-D0=4,5, рассчитанная доза 60 мГр). Более высокие значения SNRnorm не достижимы для пленочных систем согласно стандарту EN584-1, потому что увеличение дозы ведет к увеличению оптической плотности почернения D>5, а такие изображения практически являются нечитаемыми. Базовое пространственное разрешение пленочной системы определяется качеством излучения (220 кВ, 8 мм фильтр медь), потому что это определяет толщину используемых свинцовых экранов (см. стандарт EN 444) и разброс электронов, генерируемых свинцовыми экранами для экспозиции пленки. Таблица 2 в стандарте EN ISO 14096-2 приводит значения, подобные SRb для корректной оцифровки пленки при переводе изображения на пленке в цифровую форму.

Качество изображения, достижимое с помощью систем компьютерной радиографии

Качество изображения, получаемое с помощью КР систем, классифицируется в соответствии с классами для пленочных NDT систем (таблица 1). Предельные значения SNRnorm соответствуют предельным значениям для подобных пленочных систем. Дополнительно к параметрам, характеризующим пленку, вводится базовое пространственное азрешение КР системы (SRb, мкм, в соответствии со стандартом 14874-1). Этот параметр определяет ограниченное пространственное разрешение КР систем по сравнению с пленкой.

Главным достижением в применении КР в неразрушающем контроле для замены пленки при контроле литья и сварки стало появление в последние годы сканера HD CR 35 (Duerr)*. Требования к КР системам в неразрушающем контроле определены стандартами EN 14784-1 и EN 14784-2. Таблица 4 стандарта определяет минимальное пространственное разрешение в зависимости от класса контроля, энергии облучения и толщины объекта контроля. В то время как большая часть содержания стандарта EN 14784-2 подобна EN 444 (основные принципы радиографического контроля в NDT), Таблица 4 в EN 14784-2 является нововведением и ограничивает значения пространственного разрешения используемых КР систем. Система компьютерной радиографии

Существует еще одно ограничение на качество изображения систем КР. С увеличением экспозиционной дозы максимально достижимое значение SNRnorm ограничено. Это вызвано наличием структурного шума используемой запоминающей пластины. Дополнительные шумы в виде дополнительных пульсаций может вносить также сканер. Структурный шум запоминающей пластины связан с неоднородностями фосфорного слоя, связанными с процессом производства. Этот эффект известен также и для флуоресцентных экранов. При высоких экспозиционных дозах вклад квантового шума рентгеновского излучения невелик по сравнению с этими структурными шумами, отсюда качество изображения приходит к ограничению.

Сравнение снимков цифровой радиографии

Пример достижимого качества изображения при контроле сварных соединений приведен на рис.9. Времена экспозиции достаточно высоки, поэтому шум на изображениях определяется структурным шумом самих КР систем. Очевидно, что стандартная КР система имеет худшее качество изображения (как значения SRb, так и SNRnorm) по сравнению с лучшей пленочной NDT системой, в то время как на HD-CR системе можно получить немного лучший результат, чем на пленочной системе. Согласно EN 14784-2 система HD-CR достигает класса В. Стандартная система не достигает класса А в этом примере. Сравнение снимков сварного шва

Качество изображения, достижимое с помощью цифровых детекторных систем

ЦДСизображения были получены помощью плоскопанельного детектор XRD 1620 компании Perkin Elmer.Использовались две геометрии просвечивания:1. Тестовый образец находился непосредственно перед детектором (увеличение = 1) и 2. Тестовый образец находился межддетектором и рентгеновской трубко (увеличение = 3,5). Последняя геометрия требует применения мини фокусной трубки, чтобы геометрическая нерезкость на детекторе не превышала 200 мкм. На рис. 10 для сравнения представлены изображения одного и того же участка сварного шва на тестовом образце, полученные на пленке и с применением ЦДС.

Из чисто визуального сравнения двух изображений следует, что качество изображения, полученного с помощью плоской панели, выше при гораздо меньших дозовых нагрузках. Для более детального исследования было проведено сравнение изображений (рис. 11) одного и того же участка тестового образца (область шириной 12 мм с выявленными трещинами), приведенных к одному размеру (увеличение левого, пленочного изображения регулировалось с помощью оцифровщика, среднее изображение получено на плоской панели с геометрическим увеличением =1, правое – на плоской панели с увеличением 3,5).

Качество снимков цифровой радиографии

Значительное увеличение SNRnorm в ЦДС технологии позволяет даже при увеличении 1 и базовом пространственном разрешении 200мкм детектировать микротрещины, которые на пленке (с гораздо лучшим SRb порядка 50 мкм) находятся на уровне шумов При увеличении 3,5 (рис. 11, правое изображение, предполагаемое SRb=70 мкм) можно различить гораздо больше деталей по сравнению с пленкой. Это улучшение качества изображения основано на увеличении SNRnorm по сравнению с пленочной технологией. Улучшенное SNR для ЦДС позволяет детектировать элементы с размерами, гораздо меньшими размера пикселя! На рис. 12 показаны два изображения одного и того же участка, полученные на пленке и плоской панели. Слева на пределе различима проволока W16. Справа мы видим проволоку W19 (50 мкм) при размере пикселя 200 мкм! Этот эффект называется субпиксельным разрешением. Недостаточное SRb компенсируется высоким SNR!

Как уже упоминалось, максимально достижимое значение SNRnorm для пленочной системы наивысшего класса ограничено максимальным рабочим диапазоном негатоскопов и оцифровщиков, с максимальным значением плотности почернения D=4,7. Это также ограничивает максимально возможную дозу облучения. Более высокие значения SNRnorm (больше 250) потребуют больших экспозиционных доз. Но пленки в принципе не читаемы при плотностях D>5. В случае КР систем, качество изображения ограничено их структурным шумом. Максимальное значение SNRnorm для современных КР систем пока не может быть выше 300. Эти ограничения SNRnorm для пленочных и КР систем преодолеваются для ЦДС следующим образом: перед насыщением ЦДС изображение может быть считано, ЦДС обнулен и может быть начат новый цикл экспозиции. Все изображения, полученные в таких циклах, могут усредняться в компьютере с получением окончательного усредненного изображения. Таким образом, время экспозиции может увеличиваться без какого-либо предела. Качество снимков цифровой радиографии

SNRnorm будет увеличиваться как квадратный корень из числа усредненных изображений, и/или квадратный корень дозы. Время экспозиции такого цикла может продолжаться без какого либо технического предела. SNRnorm будет линейно увеличиваться в зависимости от квадратного корня от дозы (эквивалентно времени экспозиции или количеству усредненных изображений). В [4] проведен детальный расчет SNRnorm при различных условиях просвечивания для детектора DIC100TL компании Ajat. Получены значения SNRnorm до нескольких тысяч.

Однако такие высокие значения SNRnorm обычно не достигаются в радиографической практике. Существуют практические ограничения: отклонения в чувствительности отдельных пикселей ЦДС ограничивают достижимое значение SNR на изображении. Не может быть достигнуто какого-либо дальнейшего улучшения SNRnorm, если пуассоновский шум рентгеновских квантов уменьшили в результате многократного усреднения до уровня ниже разницы между соседними пикселями. SNRnorm ограничено структурным шумом детектора. Здесь та же самая причина, что и в КР.

Однако ЦДС имеет существенное преимущество перед КР, о котором мы уже говорили в разделе «калибровка»: пиксели цифровой детекторной системы расположены в матрице, их положение фиксировано в процессе экспозиции и считывания. Поэтому небольшие отличия между пикселями (в чувствительности или в условиях вывода сигнала) приемлемы и могут быть точно измерены. Поскольку эти изменения стабильны во времени, возможна компенсация разницы между различными пикселями с помощью соответствующего программного обеспечения в процессе калибровки.

Такая калибровка ЦДС является ключом к улучшению контрастной чувствительности и высокому отношению сигнал/шум вследствие уменьшения структурного шума ЦДС. По сравнению со «стандартной калибровкой», предусматривающей однократную компенсацию в условиях вывода сигнала и усиления изображения можно произвести многократную корректировку усиления, приводящую к гораздо большему увеличению SNRnorm за счет компенсации различий между отдельными пикселями. Таким образом, для ЦДС с помощью хорошей калибровки можно преодолеть ограничения на величину SNRnorm, имеющиеся для пленочной и КР технологий.

Преимущество калибровки состоит не только в увеличении SNR, но и в уменьшении времени экспозиции. Требуемое качество изображения определяет необходимое время накопления. По сравнению с однократной калибровкой адаптивная многократная калибровка позволяет получить изображение с тем же самым отношением сигнал/шум за гораздо меньшее время накопления. Авторы исследовали достижимые значения SNRnorm при различных видах калибровки для детектора Hamamatsu, С7942, (экспозиция при 120 кВ, 7 мА, 30 мм Al). Показано, что если задача требует, чтобы SNR было 500, то этого можно достичь за 250 сек. при однократной калибровке и только за 15 сек. при многократной. Чувствительность радиографического контроля.

Показано также, что в отличие от расчетных, реальные значения SNRnorm ограничены. Все кривые достигают насыщения. Причина этого или в наличии структурного шума детектора уже после калибровки, или вследствие неоднородности материала самого объекта контроля. По той же причине наступает ограничение минимального детектируемого значения изменения толщины материала в % от толщины объекта. Эта контрастная чувствительность ограничена значением 0,1%, что соответствует SNRnorm примерно 1000. Увеличение времени экспозиции от 60 до 600 сек. изменяет ситуацию очень незначительно. Таким образом, Цифровые Детекторные Системы позволяют проводить неразрушающий контроль с гораздо лучшей контрастной чувствительностью, чем прописано в стандартах по радиографии. Это подтверждается и нашими экспериментами с плоскопанельным детектором FlashScan 33 производства компании Thales. Рис. 13 показывает зависимости чувствительности контроля, определенной с помощью ступенчатого эталона на образцах нержавеющей стали различной толщины.

Выводы

Детально рассмотрены новые цифровые технологии в неразрушающем контроле – компьютерная радиография с использованием многоразовых запоминающих пластин и цифровая радиография на базе плоскопанельных цифровых детекторных систем. Проведено сравнение этих технологий с традиционной пленочной технологией. Обсуждены важнейшие параметры, характеризующие качество и информативность изображения при использовании различных технологий. Показано, что с помощью систем компьютерной радиографии можно получать качество изображения, несколько лучшее по сравнению с пленочными системами и подтверждено, что эта технология в большинстве практических случаев позволяет полностью заменить пленку. Показано, что применение цифровых детекторных систем (плоскопанельных и линейных детекторов), позволяет получить существенно более высокое качество изображения, чем в пленочных и КР системах, что стало возможным в результате операций калибровки детекторов. Показано, что в результате использование цифровых детекторных систем позволяет снизить предел обнаружения изменения толщины материала до 0,1%. Показано, что вследствие высокого отношения сигнал шум, присущего цифровым детекторам, возможна индикация дефектов, существенно меньших по размеру, чем пиксель.

Отмечая новые, прорывные возможности цифровых детекторов, хочу упомянуть и о некоторых ограничениях, присущих этой технике. Она требует очень аккуратного обращения, критична к условиям окружающей среды, поэтому используется пока в полулабораторных условиях (специализированные радиографические комплексы, компьютерная радиография). Кроме того, будущее цифровой радиографии в значительной степени будет зависеть от того, как на технологическом уровне будут решаться проблемы с «плохими» пикселями и надежностью этой техники в целом.

Источник - статья А. А. Майорова опубликованная в журнале « В мире НК » № 1(35). 2007.

 

Другие статьи на тему цифровой радиографии можно посмотреть в разделе Статьи.

 

 

Лидеры продаж

Image Caption

Шаблон Ушерова-Маршака - 890 рублей с НДС

Image Caption
Image Caption
Image Caption

Комплект ВИК "Сварщик"

Image Caption

Комплект ВИК "Энергетик"

Image Caption

Учебные плакаты по неразрушающему контролю

Image Caption

Фотоальбом дефектов основного металла

Image Caption

Комплект ВИК "Поверенный"

Image Caption

Гель для УЗК «Сигнал-1»

Image Caption

Универсальный шаблон сварщика УШС-3

Image Caption

Альбом радиографических снимков

Image Caption

Магнитный прижим П-образный

Поиск

Документы

ОПРОС:
Какое оборудование кроме НК вас интересует:

 
Яндекс.Метрика
Наш канал на YouTube