3AO «KOHCTAHTA»

ПРИБОР ДЛЯ КОНТРОЛЯ И ОБНАРУЖЕНИЯ ДЕФЕКТОВ ИЗОЛЯЦИОННЫХ ПОКРЫТИЙ ЭЛЕКТРОИСКРОВЫМ МЕТОДОМ

«KOPOHA - C»

Вариант для использования в системах заводского контроля.

Руководство по эксплуатации.

УАЛТ.025.000.00ПС

СОДЕРЖАНИЕ

- 1. Введение
- 2. Назначение прибора
- 3. Технические характеристики
- 4. Комплект поставки
- 5. Устройство и работа прибора
- 6. Указание мер безопасности
- 7. Подготовка к работе и порядок работы
- 8. Техническое обслуживание
- 9. Правила хранения и транспортировки
- 10. Возможные неисправности и методы их устранения
- 11. Гарантийные обязательства
- 12. Свидетельство о приемке

1. ВВЕДЕНИЕ

Настоящий паспорт, совмещенный с техническим описанием и инструкцией по эксплуатации, предназначен для ознакомления с устройством, принципом действия и правилами эксплуатации прибора для контроля и обнаружения дефектов изоляционных покрытий электроискровым методом Корона — С, в дальнейшем прибора.

2. НАЗНАЧЕНИЕ ПРИБОРА

- **2.1.** Прибор предназначен для контроля сплошности диэлектрических (полимерных, эпоксидных и битумных) изоляционных покрытий газо- и трубопроводов, емкостей, цистерн и других конструкций в составе систем автоматизированного контроля заводских комплексов управления.
- **2.2.** Прибор обеспечивает выявление локальных сквозных нарушений сплошности (дефектов) изоляционных покрытий изделий с сухой поверхностью с возможностью их регистрации в базах данных контроллеров сбора информации.
 - 2.3. Рабочие условия эксплуатации прибора:
 - температура окружающего воздуха от +5 до +40 °C;
 - относительная влажность воздуха до 95 % при +25 °C (без конденсации влаги);
 - атмосферное давление от 86.6 до 106.6 кПа.
- **2.4.** Прибор позволяет проводить автоматизированный контроль сплошности изоляционных покрытий на трубопроводах любого диаметра с использованием щеточных и пружинных электродов на наружной и внутренней поверхностях труб.

3. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- **3.1.** Высокое испытательное (контрольное) импульсное напряжение между высоковольтным выводом и клеммой заземления от 2 до 35 кВ.
- **3.2.** Прибор имеет цифровую индикацию выходного испытательного напряжения.
 - 3.3. Дискретность установки выходного напряжения 100в
- **3.4.** Погрешность установки выходного напряжения не более 0,01Uвых +500B, где Uвых испытательное напряжение
 - **3.5.** Частота следования импульсов 50 Гц.

- **3.6.** Прибор обеспечивает выявление сквозных дефектов диаметром не менее 0,3 мм в изоляционных покрытиях толщиной до 9,5 мм при скорости перемещения электрода не более 0,35 м/сек.
- **3.7.** Наименьшее расстояние между двумя дефектами, фиксируемыми как раздельные, составляет 15 мм.
- **3.8.** Прибор обеспечивает световую сигнализацию на передней панели шкафа управления, а также подключение внешних устройств дистанционной сигнализации при образовании электрического искрового пробоя в процессе контроля.
- **3.9.** Питание прибора осуществляется от сети переменного тока частотой 50-60Гц и напряжением от 100В до 240В.
 - 3.10. Прибор обеспечивает возможность контроля труб диаметром до 1530 мм.
- **3.11.** Время установления рабочего режима после нажатия **кнопки «Включение высокого напряжения»** не более 5 сек.
- **3.12.** Электрическая прочность изолирующих оболочек дефектоскопа обеспечивает отсутствие электрического пробоя между высоковольтным выводом и проводом заземления в нормальных условиях и при верхнем значении относительной влажности рабочих условий.
 - 3.13. Средний срок службы дефектоскопа не менее 5 лет.

4. КОМПЛЕКТ ПОСТАВКИ

4.1. Высоковольтный трансформатор-держатель- 1 шт4.2. Шкаф управления- 1 шт4.3. Руководство по эксплуатации шкафа управления- 1 шт4.4. Провод заземления с магнитом- 1 компл.4.5. Кабель сетевого питания- 1 шт.

Рис. 1. Общий вид прибора

- 1 шкаф управления,
- 2 высоковольтный трансформатор-держатель,
- 3 удлинитель кабеля трансформатора,
- 4 Электрод резиновый кольцевой для тестирования внутренних покрытий,
- 5 Электрод резиновый кольцевой для тестирования внешних покрытий,
- 6 Провод заземления с магнитом

5. УСТРОЙСТВО И РАБОТА ПРИБОРА

Принцип действия прибора основан на электрическом пробое воздушных промежутков между приложенным к поверхности покрытия трубопровода электродом, подключенным к одному полюсу источника высокого напряжения (выход высоковольтного трансформатора-держателя), и самим трубопроводом, подключенным к другому полюсу указанного источника высокого напряжения (клемма заземления блока контроля) непосредственно или через грунт при помощи штыря - заземлителя и провода заземления.

Электрический пробой воздушных промежутков приложенным между электродом и трубопроводом импульсным высоким напряжением преобразуется в электрические сигналы, фиксируемые устройством звуковой и световой сигнализации.

- **5.1.** Общий вид прибора приведен на рис. 1.
- **5.2.** Схема внутренних соединений прибора показана на рис.2
- 5.3. Схема внешних соединений прибора показана на рис.2.1

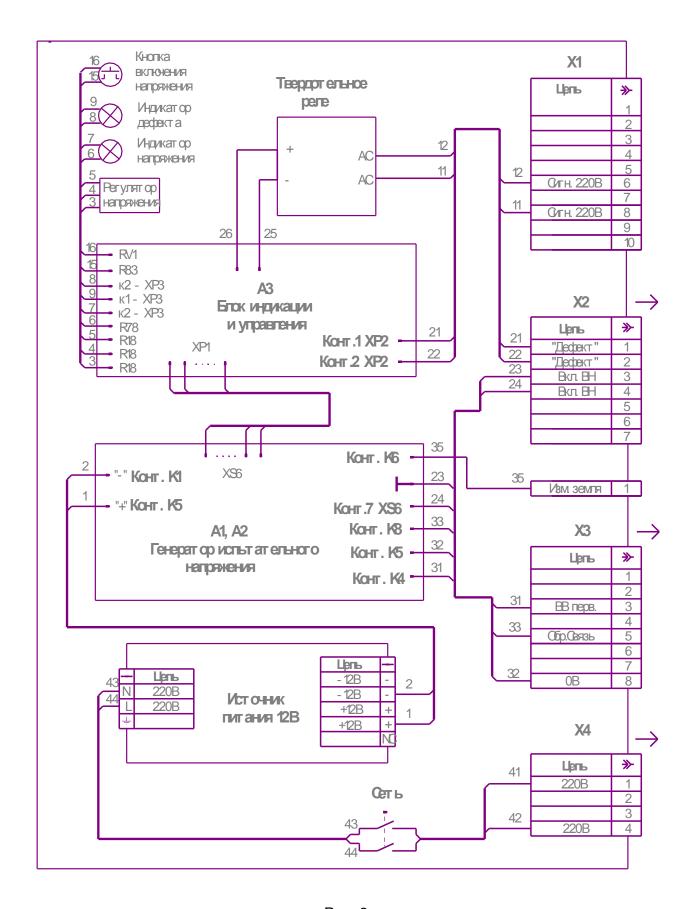


Рис. 2

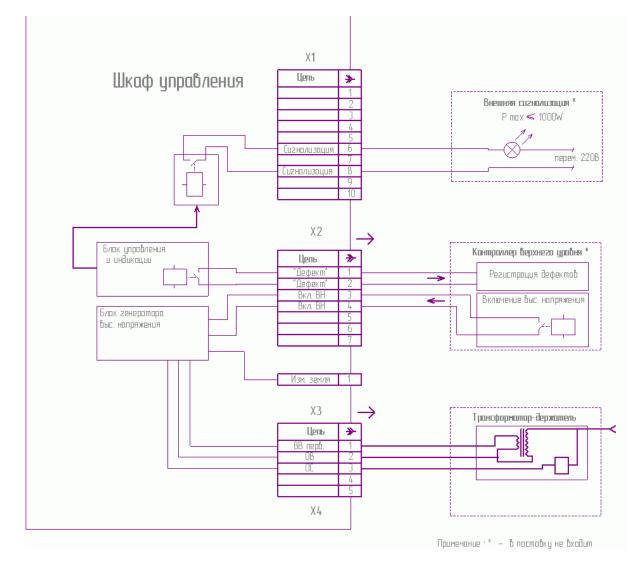


Рис. 2.1

5.4. Электроды, входящие в комплект прибора, предназначены для подведения электрического напряжения к поверхности изоляционного покрытия объектов контроля. Рекомендуемые конфигурации электродов для видов контроля приведены далее.

5.4.1. КОЛЬЦЕВОЙ РЕЗИНОВЫЙ ЭЛЕКТРОД ДЛЯ ТЕСТИРОВАНИЯ ВНУТРЕННИХ ПОКРЫТИЙ.

Рис. 3.

Предназначен для определения мест нарушений сплошности внутренних изоляционных покрытий труб в составе электроискрового дефектоскопа. См. отдельное руководство по эксплуатации УАЛТ.025.072.00.

5.4.2. КОЛЬЦЕВОЙ РЕЗИНОВЫЙ ЭЛЕКТРОД ДЛЯ ТЕСТИРОВАНИЯ ВНЕШНИХ ПОКРЫТИЙ.

Рис. 4.

Предназначен для определения мест нарушений сплошности внешних изоляционных покрытий труб в составе электроискрового дефектоскопа. См. отдельное руководство по эксплуатации

5.5. ОРГАНЫ РЕГУЛИРОВКИ, НАСТРОЙКИ И СИГНАЛИЗАЦИИ

5.5.1. Шкаф управления.

На лицевой панели шкафа управления Рис. 5. расположены:

- 1. «СЕТЬ»-тумблер включения общего питания системы со световой индикацией.
- **2.** «Регулировка высокого напряжения» потенциометр регулятор для задания амплитуды контрольного напряжения.
- **3**. Кнопка «**Включение высокого напряжения**» для подачи испытательного напряжения на электрод.
- **4. Зеленый светодиод «Высокое напряжение»**, являющийся сигнализатором подачи испытательного напряжения.
- **5. Красный светодиод «Дефект»,** являющиеся сигнализатором наличия дефекта покрытия
- 6. Трехразрядный цифровой индикатор испытательного напряжения

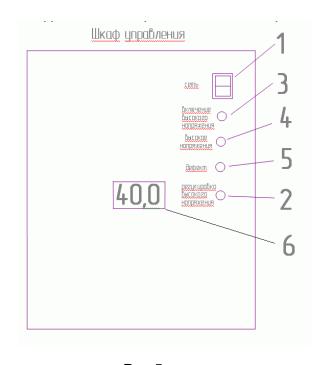


Рис.5

- **5.5.2.** На боковой стенке блока контроля расположены:
- разъем **«X1»** для подключения дополнительных устройств сигнализации. При нахождении дефекта, через контакты **6 и 8** разъема **X1** и контакты реле замыкается цепь внешней сигнализации на время не менее 3 с.

Характеристики:

Максимальный ток коммутации – 10 А

Максимальное напряжение коммутации – перем.250В

Падение напр. на замкнут. конт. – 1.5В

Электрическая прочность изоляции вторичной цепи (вход – выход) –4000В

Электрическая прочность между разомкнутыми контактами – 250 В

- разъем **«X2»** для подключения устройств управления и регистрации.

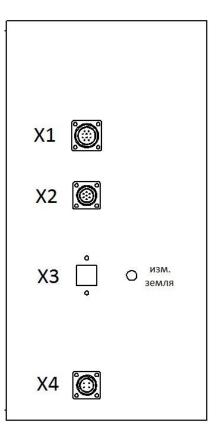
*устройства регистрации поставляются расширенном варианте

Замыкание контактов 3 и 4 разъема **X2** между собой позволяют включать испытательное напряжение см. п 5.5.4

- разъем **«X3»** для подключения высоковольтного трансформатора-держателя.
- вывод «**ИЗМ. ЗЕМЛЯ**» (ИЗМЕРИТЕЛЬНАЯ ЗЕМЛЯ) для присоединения провода заземления, служащего для образования электрической цепи между нулевым выводом вторичной обмотки высоковольтного трансформатора-держателя и трубопроводом. (Провод заземления представляет собой электрический проводник, подключаемый одним концом к указанному выводу «**ИЗМ. ЗЕМЛЯ**», а другим к трубопроводу непосредственно или через грунт с использованием штыря. В качестве проводника в проводе заземления применен стальной трос или гибкий медный провод, заканчивающийся с обоих концов наконечниками).

5.5.3. Выявление дефекта покрытия.

По нажатию **кнопки «Включение высокого напряжения»** или замыкании контактов **3** и **4** разъема **X2** прибор генерирует высокое импульсное напряжение, подаваемое на электрод. При этом загорается зеленый светодиод **«Высокое напряжение»**.


Высокое напряжение через электрод прикладывается к изоляционному покрытию трубопровода или другого изделия.

Второй вывод присоединен к проводу заземления и через него подключается к трубопроводу или другому изделию непосредственно (при помощи магнита либо зажима типа «крокодил») или через грунт при помощи штыря - заземлителя.

Между заземленным концом вторичной и одним из концов первичной обмотки трансформатора включен опорный резистор. При возникновении искровых разрядов между электродом и трубопроводом (изделием) детектор формирует импульсы напряжения, включающие красный светодиод «Дефект» и замыкающие контакты реле, подключенные к контактам 1 и 2 разъема X2, а также к контактам 6 и 8 разъема X1 цепи устройств световой и звуковой сигнализации.

5.5.4. Управление включением высокого напряжения.

Существует возможность включения испытательного напряжения двумя способами – с передней панели прибора, при нажатии на кнопку «Включение высокого напряжения» и дистанционно, путем замыкания контактов 3 и 4 разъема Х2. Протекающий через эти контакты ток при этом не более 7мА. ! ВНИМАНИЕ! Эти контакты гальванически связаны с цепями питания прибора и требуют для коммутации «сухих»

изолированных контактов реле (см. рис 2.1). Невыполнение этого условия может привести к неисправности.

6. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ.

- **6.1.** К работе с прибором допускаются лица, обученные обращению с прибором, изучившие «Правила безопасности в газовом хозяйстве», настоящий паспорт и имеющие группу по электробезопасности не ниже второй.
- **6.2.** Опасными производственными факторами при наладке, испытаниях и эксплуатации прибора согласно ГОСТ 12.0.003-74 являются высокое импульсное напряжение, замыкание которого может произойти через тело человека. Прикосновение к элементам этих цепей категорически запрещено.
- **6.3.** При контроле контакт провода заземления должен быть плотно прижат к зачищенной поверхности трубопровода при помощи магнита или подсоединен с использованием зажима «крокодил». Перед подсоединением провода заземления необходимо убедиться в отсутствии в нем скрытого обрыва путем контроля с помощью омметра.
- **6.4.** При отсутствии доступа к стенке трубы контакт провода заземления должен быть надежно подсоединен к штырю заземлителю, заглубленному в землю. Заземление с помощью штыря заземлителя запрещается при сухом состоянии почвы на глубине погружения штыря. Установку штыря заземлителя необходимо производить в тех местах, где отсутствует силовой кабель.
- 6.5. Электрод прибора при проведении контроля должен располагаться на объектах контроля или испытательном оборудовании таким образом, исключалась возможность случайного прикосновения к нему. При эксплуатации прибора строительных площадках должны приниматься меры по предотвращению непреднамеренного доступа людей в зону, находящуюся вблизи контролирующих электродов. согласно требованиям СНиП III-4-80 «Техника безопасности строительстве».
- **6.6.** Эксплуатация прибора должна производиться с применением диэлектрических перчаток и бот с соблюдением «Правил техники безопасности при эксплуатации электроустановок потребителей».

Запрещается производить контроль дефектов при влажной поверхности изоляции, а также в дождь и грозу.

- **6.7.** Запрещается применение прибора на взрыво- и пожароопасных объектах без соответствующей подготовки объектов к этой работе и оформления наряда допуска.
 - 6.8. Запрещается оставлять включенный прибор без наблюдения.

Необходимо выключить высокое напряжение прибора в следующих случаях:

- при отметке места обнаруженного дефекта;
- при отвлечении внимания дефектоскописта от наблюдения за прибором;
- при замене электрода;
- во всех других случаях, не связанных с контролем изоляции.
- **6.9.** При работе с прибором не допускается случайное прикосновение или приближение к электроду на расстояние менее 150 мм. Не допускается касание проводящих поверхностей, находящихся в зоне контроля и электрически не связанных с проводом заземления.
- **6.10.** Работы по наладке, проверке, испытаниям и ремонту прибора должны проводиться с соблюдением следующих требований:
- персонал, допускаемый к этим работам, должен удовлетворять требованиям ГОСТ 12.1.013-78;
- рабочие места должны быть обособлены и ограждены от непреднамеренного доступа посторонних лиц;

- к работе с прибором допускаются лица, ознакомленные с особенностями устройства прибора и с источниками опасности, имеющимися при работе с ним;
- работы с прибором должны производиться персоналом в количестве не менее 2-х человек:
- работы по наладке и испытаниям прибора, связанные с получением электроискрового разряда и проверкой электрической прочности и сопротивления изоляции узлов прибора, должны проводиться с применением диэлектрических перчаток и ковриков.

7. ПОДГОТОВКА К РАБОТЕ И ПОРЯДОК РАБОТЫ

7.1. Перед началом работы протрите сухой ветошью корпус и рукоятку высоковольтного трансформатора- держателя и кабель заземления, удалив с их поверхностей пыль, грязь и влагу.

Ручку регулятора высокого напряжения на передней панели прибора установите в положение, соответствующее минимальному контрольному напряжению.

7.2. Извлеките из футляра провод заземления, проверьте его электрическую целостность с использованием омметра.

Разверните провод заземления на всю длину вдоль контролируемого трубопровода (объекта контроля) от места начала контроля в направлении перемещения электрода. Затем прикрепите при помощи винта к наконечнику провода заземления магнит (если имеется доступ к металлической стенке трубы), либо штырь- заземлитель.

Произведите электрическое подсоединение одного конца провода заземления к контролируемому трубопроводу непосредственно при помощи магнита, либо зажима типа «крокодил» или через грунт путем заглубления в него штыря-заземлителя вблизи трубопровода (в последнем случае трубопровод должен быть заземлен). При непосредственном подсоединении провода заземления к трубопроводу последний должен быть зачищен до металлического блеска в месте контакта с магнитом либо зажимом типа «крокодил».

7.3. Подключите и надежно зафиксируйте второй конец провода заземления к выводу **«изм. земля»** на боковой панели шкафа управления.

7.4. Выбор величины контрольного напряжения.

В соответствии с методическими указаниями стандарта NACE PR0274 – 2004 высокое контрольное напряжение при контроле изоляции трубопроводов и других изделий выбирается по следующей формуле:

$$U = 7.9 \sqrt{H}$$

Где Н – толщина покрытия, мм, U – контрольное напряжение, кВ.

При возможной девиации толщины покрытия допускается увеличение вычисленного значения контрольного напряжения на 10...20% для гарантированного выявления дефектов. Ниже приведены значения контрольного напряжения для толщин покрытий

Толщина Н, мм	Контрольное напряжение U, кВ		
0,5	5,5		
1	7,9		
2	11		
3	13,6		
4	15,8		
5	17,6		

Примечание: В случае неизвестного значения толщины Н ее необходимо измерить электромагнитным толщиномером, например, серии КОНСТАНТА

Допускается увеличение контрольного напряжения на 10...20 % при необходимости (Например, при очень низкой влажности воздуха).

- **7.5.** При возможности проверьте работоспособность прибора на отрезке трубы с изоляцией, аналогичной по типу и толщине контролируемой, имеющей искусственные дефекты, при необходимости откорректируйте величину контрольного напряжения для надежного срабатывания прибора на дефектных участках.
- 7.5.1. Расположите электрод на контролируемой поверхности покрытия таким образом, чтобы он плотно прилегал к покрытию по всей своей длине. Нажмите кнопку «включение высокого напряжения» и перемещайте электрод по изоляционному покрытию со скоростью не более 0,3 м/сек. При нормальном функционировании прибора в местах нарушения сплошности изоляции возникает электрический пробой воздуха между электродом и трубопроводом, который сопровождается звуковым и световым сигналами.
- **7.5.2.** В процессе контроля необходимо периодически производить перестановку заземляющего штыря (магнита) вдоль трубопровода. При этой операции прибор должен быть выключен.
- **7.5.3.** Обнаруженные в процессе контроля дефектные участки изоляционного покрытия трубопровода должны отмечаться для последующего ремонта. **ЗАПРЕЩАЕТСЯ** производить ремонт покрытия на расстоянии менее 5 м от места расположения контролирующего электрода включенного прибора.
- **7.5.4.** При фиксации дефекта покрытия светодиод **«ДЕФЕКТ»** горит красным цветом.
- **7.5.5.** В процессе контроля желательно периодически убеждаться в нормальном функционировании прибора на отрезке трубопровода с известными дефектами покрытия в соответствии с п. 8.3 настоящего паспорта.

7.6. УСТАНОВКА ВЕЛИЧИНЫ КОНТРОЛЬНОГО НАПРЯЖЕНИЯ.

Производится при отсутствии испытательного напряжения.

- **7.6.1.** При подсоединенном кабеле заземления, включить тумблер **«СЕТЬ»**. На цифровом индикаторе отобразится текущая настройка величины испытательного напряжения.
- **7.6.2.** Вращая ручку регулятора **«Регулировка высокого напряжения»** установить требуемую величину испытательного напряжения по индикатору.

7.7. УСТАНОВКА ЧУВСТВИТЕЛЬНОСТИ.

Производится квалифицированным персоналом в случае ложных срабатываний сигнализации дефекта. Подстроечный резистор R81 находится внутри шкафа.

- **7.7.1.** Исходная (максимальная) величина чувствительности соответствует крайнему положению при вращении резистора R81 против часовой стрелке до упора.
- **7.7.2.** При наличии ложных срабатываний (например, из-за повышенной влажности) необходимо уменьшить чувствительность вращением резистора R81 по часовой стрелке до момента их исчезновения.

7.8. Контроль с использованием пружинных электродов.

7.8.1. Подготовьте пружинный электрод к контролю (соберите и наденьте на трубу) в соответствии с паспортом УАЛТ.025.350.00 ПС

Рис.7

Допускается увеличение контрольного напряжения на 10...20 % при необходимости (Например, при очень низкой влажности воздуха).

При нормальном функционировании прибора в местах нарушения сплошности изоляции возникает электрический пробой воздуха между электродом и трубопроводом, который сопровождается звуковым и световым сигналами.

- **7.8.2.** В процессе контроля необходимо периодически производить перестановку заземляющего штыря (магнита) вдоль трубопровода. При этой операции прибор должен быть выключен.
- **7.8.3.** Обнаруженные в процессе контроля дефектные участки изоляционного покрытия трубопровода должны отмечаться для последующего ремонта. **ЗАПРЕЩАЕТСЯ** производить ремонт покрытия на расстоянии менее 5 м от места расположения контролирующего электрода включенного прибора.

8. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- **8.1.** Перед началом работы и периодически в процессе эксплуатации необходимо проводить внешний осмотр составных частей прибора. При внешнем осмотре необходимо:
- проверить отсутствие влаги на поверхности шкафа управления и высоковольтного трансформатора-держателя;
- проверить отсутствие грязи на поверхности электродов, а также всех блоков и узлов прибора;
 - проверить омметром электрическую целостность провода заземления;
- проверить отсутствие трещин и других повреждений в изоляционных оболочках и покрытиях высоковольтного трансформатора держателя и корпуса блока контроля.

Работа с прибором при наличии повреждений в изоляционных покрытиях **НЕ ДОПУСКАЕТСЯ**.

- **8.2.** Необходимо периодически, не реже одного раза в месяц, проверять сопротивление изоляции корпуса блока управления с помощью мегометра Ф-4102 между высоковольтным выводом и указанным корпусом. Измеренное значение сопротивления должно быть не менее 1500 МОм.
- Перед началом работы, периодически в процессе ее проведения, а также в конце необходимо проверять функционирование прибора. Эта проверка должна производиться на отрезке трубы с изоляционным покрытием, аналогичным контролируемому, и имеющему известные естественные или искусственные дефекты в виде сквозных отверстий диаметром от 0,5 до 1,0 мм, расположенных в местах с наибольшей толщиной покрытия. Результаты проверки следует считать положительными, если при нахождении электрода на дефектном участке изоляционного покрытия имеет место срабатывание звуковой и световой сигнализации прибора, при установке регулятора высокого напряжения в соответствующее положение.

Допускается проводить проверку прибора на дефектах в изоляционном покрытии контролируемого изделия.

9. ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВКИ

Хранение и транспортировка прибора производится в соответствующей таре. Условия хранения прибора по группе 2 ГОСТ 15150-75.

10. ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ

Если при включении питания прибора светодиод **«СЕТЬ»** не загорается, проверьте целостность проводов подсоединения питания сети 220В.

Все остальные возможные неисправности целесообразно устранять у изготовителя прибора.

11. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- **11.1.** Гарантийный срок эксплуатации прибора 12 месяцев со дня отгрузки потребителю.
- **11.2.** Изготовитель несет ответственность за качество изделия в течение гарантийного срока при соблюдении требований условий эксплуатации, транспортирования и хранения настоящего паспорта.

гранспортирования и хранения	настоящего паспорта.
электроискровым методом «К	О О ПРИЕМКЕ и обнаружения дефектов изоляционных покрытий ОРОНА-С», зав. № соответствует техническим разделе 3 паспорта и признан годным к эксплуатации.
Дата изготовления <u> </u>	201 г.
МП	Контролер ОТК
Дата аттестации <u> </u>	01 г.

Сведения о ремонтах.

Наименование изделия:

№ 1 2 3 ремонта Дата приемки Дата выдачи	
Дата приемки Дата выдачи	
Приемки Дата выдачи	
Дата выдачи	
выдачи	
Выдачи	
Вид дефекта	
Дефекта	
Описание	
ремонта	
Мастер	

ATTEC1	ΓΑΤ №	
	Дата выдачи	
Удостоверяется, что <u>Дефектоскоп</u>	л «Корона-С»	
наименова	ание и обозначение испытательного оборудования, зав. №	
принадлежащее		
	наименование предприятия	
по результатам периодической аттестации	и, протокол № от	_г.
•	ии <u>3 года</u> (месяцев, лет)	
Аттестат выдан		_
Руководитель предприятия Подпись	енование организации, выдавшей аттестат	
	МП	

Результаты аттестации

1. Внешний осмотр			
Результаты осмотра <i><u>На ко</u></i>	<u>рпусе дефектоскопа видимых повреждений неп</u>	1	
2. Опробование			
Результаты опробования	Дефектоскоп выполняет основные функции	·	
3. Определение электрическ	ой прочности изоляции и сопротивления изоляц	ии.	
Результаты определения	R _{из} > 4000 МОм		
4. Определение чувствитель	ности и разрешающей способности		
Результаты определения	На образце толщиной 9 мм разреш. способн напряжении 25 кВ роизводимых напряжений	ость не м	иенее 0,5 мм при минимальном
Значение напряжения	Амплитуда напряжения на экв. нагрузке R= 4 Мом C= (30±3)пФ, кВ	Примечание	
3 40 кВ	Соответствует выходному напряжению 3 40 кВ, погрешность не более 5 %		
Заключение о пригодности к эк	сплуатации <u>годен</u>		