

Закрытое акционерное общество "НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ИНТРОСКОПИИ МНПО "С П Е К Т Р"

МАГНИТОМЕТР МХ-10

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ Иа2.778.009 РЭ

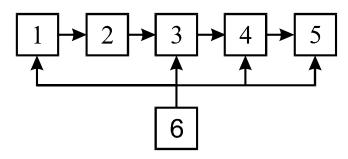
СОДЕРЖАНИЕ

1	ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	. 4
2	УСТРОЙСТВО И РАБОТА МАГНИТОМЕТРА	. 5
3	ПОДГОТОВКА МАГНИТОМЕТРА К РАБОТЕ	. 7
4	ПОРЯДОК РАБОТЫ	.7
5	ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	.9
	ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ	10
7	ПРАВИЛА ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ	11

Руководство по эксплуатации позволяет ознакомиться с устройством и работой магнитометра МХ-10 (в дальнейшем — магнитометр) и устанавливает правила его эксплуатации, транспортирования и хранения, соблюдение которых обеспечивает поддержание его в постоянной готовности к работе.

1 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

—от 0,1 до 19


1.1 Диапазон измерений, мТл

1.2 Предел допускаемой основной погрешнос	сти измерения рас-
считывается по формуле	
Δ =0,05 $ imes$ (1+ $B_{ ext{H}}$) м $T_{ ext{Л}}$,	
где B_H — показания магнитометра в м T л.	
Указанный предел погрешности обеспечивает	ся при нормальной
температуре окружающей среды равной (20±5)°С.	
1.3 Предел допускаемой дополнительной пог	грешности измере-
ния, вызванной изменением температуры окружаюц	
делах рабочего диапазона температур не превыша	ет 0,5 предела до-
пускаемой основной погрешности.	
1.4 Индикация результатов измерений	— цифровая.
Разрешающая способность магнитометра, мТл	
1.5 Электропитание магнитометра осуществ	ляется от батареи
или аккумулятора типа РР3.	
1.6 Потребляемый ток, мА, не более	—8
1.7 Время одного измерения, с, не более	 3
1.8 Габаритные размеры электронного блока	
(длина×ширина×толщина), мм	$120 \times 60 \times 25$
1.9 Габаритные размеры измерительного преоб	•
(диаметр×длина), мм	—18×173
1.10 Длина соединительного кабеля, мм	— 1500±200
1.11 Масса магнитометра, г, не более	
1.12 Распределение времени безотказной рабо	гы подчиняется
экспоненциальному закону.	
Средняя наработка на отказ, ч.	— 33000
1.13 Установленная безотказная наработка, ч	 3300

1.14 Среднее время	
восстановления работоспособности, ч	3
1.15 Полный средний срок службы, лет	— 10
1.16 Установленный срок службы, лет	<u> </u>

2 УСТРОЙСТВО И РАБОТА МАГНИТОМЕТРА

- **2.1** Принцип действия магнитометра основан на магнитных измерениях с использованием преобразователя Холла.
 - 2.2 Структурная схема магнитометра приведена на рис. 2.1.

1 — источник тока, 2 — преобразователь Холла, 3 — измерительный усилитель, 4 — блок тарировки, 5 — цифровой вольтметр, 6 — стабилизированный блок питания

Рис. 2.1 Структурная схема магнитометра МХ-10

Магнитометр работает следующим образом.

Источник 1 тока питает постоянным стабилизированным током линейный преобразователь 2 Холла. Выходная разность потенциалов преобразователя 2 Холла, пропорциональная индукции магнитного поля, пересекающего плоскость кристалла под прямым углом, поступает на вход измерительного усилителя 3. С выхода измерительного усилителя 3, обеспечивающего масштабное преобразование сигнала преобразователя 2 Холла, напряжение поступает в блок 4 тарировки,

позволяющий установить однозначную связь между измеряемой величиной индукции и напряжением, которое затем измеряется цифровым вольтметром 5. Все узлы магнитометра питаются постоянным током от стабилизированного источника 6 напряжения.

2.3 Внешний вид магнитометра показан на рис. 2.2.

Рис. 2.2 Внешний вид магнитометра МХ-10

2.4 Магнитометр состоит из электронного блока 1 и измерительного преобразователя 2, соединенных гибким кабелем 3.

На передней панели электронного блока 1 расположены цифровой индикатор 1.1. и кнопка 1.2 включения питания **"ВКЛ."**.

2.5 Измерительный преобразователь 2 содержит микросхему 2.1 с преобразователем Холла. Он имеет две рабочие плоскости A и B.

Плоскость кристалла преобразователя Холла параллельна плоскости A измерительного преобразователя, и центр кристалла расположен на расстоянии 3 мм от рабочей плоскости B и на расстоянии 0,6 мм от рабочей плоскости A.

Для измерения тангенциальной к поверхности изделия составляющей индукции магнитного поля необходимо прижать измерительный преобразователь 2 к этой поверхности плоскостью B, а для измерения нормальной к поверхности изделия составляющей индукции магнитного поля необходимо измерительный преобразователь 2 прижать к этой поверхности плоскостью A.

3 ПОДГОТОВКА МАГНИТОМЕТРА К РАБОТЕ

- **3.1** Перед включением после транспортирования выдержать магнитометр в нормальных условиях применения не менее 2 часов.
- **3.2** Вложить в батарейный отсек батарею типа PP3, подключив ее к контактной колодке.

<u>Внимание</u>: Во избежание вытекания батареи не оставляйте ее в отсеке подключенной к контактной колодке, если Вы длительное время не пользуетесь магнитометром.

4 ПОРЯДОК РАБОТЫ

- 4.1 Проверка работоспособности
- **4.1.1** Нажать и удерживать кнопку "ВКЛ.". При этом должен засветиться цифровой индикатор.

Внимание: в магнитометре установлен энергосберегающий режим работы, когда при отпускании кнопки "ВКЛ." он выключается автоматически.

4.1.2 При разряде батареи в левой верхней части цифрового индикатора высвечивается надпись "LOBAT". В этом случае необходимо произвести замену батареи питания.

4.1.3 Расположив магнитометр вдали от возможных источников магнитных полей (расстояние до ближайшего источника магнитного поля должно быть не менее 3 м), нажать кнопку "ВКЛ." и считать показания индикатора магнитометра. Они должны быть, мТл, не более:

 $\pm 0,05$ при температуре (20 ± 5)°С;

 $\pm 0,07$ во всем диапазоне рабочих температур.

4.2 Проведение измерений

4.2.1 С помощью преобразователя Холла осуществляется измерение составляющей индукции магнитного поля, ортогональной плоскости кристалла (плоскость кристалла параллельна широкой плоскости рабочей части преобразователя). Поэтому, вращая преобразователь в пространстве, можно измерять проекции вектора магнитной индукции на различные направления.

Знак «—» или его отсутствие перед результатом измерения на цифровом индикаторе указывает на направление вектора магнитной индукции в пространстве: положительное значение (знак «—» отсутствует) означает, что вектор магнитной индукции входит в плоскость А (см. рис. 2.2) измерительного преобразователя, а отрицательное значение означает, что этот вектор выходит из данной плоскости.

- **4.2.2** Для измерения нормальной к поверхности изделия составляющей индукции магнитного поля необходимо прижать к данной поверхности конец рабочей части преобразователя плоскостью A (см. рис.4.2) и считать показания на цифровом индикаторе магнитометра в мТл.
- **4.2.3** Для измерения тангенциальной к поверхности изделия составляющей индукции магнитного поля необходимо прижать к данной поверхности преобразователь плоскостью В (см. рис.2.2) и считать показания на цифровом индикаторе магнитометра в мТл.
- **4.2.4** Для измерения магнитного поля в зазоре между двумя трубами, приготовленными для сварки, ввести измерительный зонд в зазор между трубами так, чтобы плоскость А измерительного преобразователя была ортогональна оси свариваемых труб.

5 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- **5.1** Обслуживание магнитометра производится заводским персоналом из подразделений цеха контрольно-измерительных приборов (КИП) или аналогичных.
- **5.2** Техническое обслуживание магнитометра состоит из профилактического осмотра, планово-профилактического ремонта, текущего ремонта и калибровки.
- **5.3** Периодичность профилактических осмотров устанавливается в зависимости от производственных условий, но не реже одного раза в месяц. При профилактическом осмотре проверяются крепление и целостность измерительного преобразователя и соединительного кабеля, состояние электронного блока и надписей на его панелях.
- 5.4 Планово-профилактический ремонт производится после истечения гарантийного срока и далее не реже одного раза в год. Ремонт включает в себя визуальный осмотр магнитометра, осмотр внутреннего состояния монтажа, проверку надежности контактных соединений, удаление пыли и грязи. При этом выполняются все виды работ, необходимость которых выявлена при профилактическом осмотре магнитометра. В случае выхода из строя радиоэлементов магнитометра они подлежат замене.
- **5.5** Текущий ремонт производится в ходе эксплуатации магнитометра. При этом устраняются неисправности, замеченные при профилактическом осмотре, путем замены или восстановления отдельных частей магнитометра (замена радиоэлементов, восстановление нарушенных связей и т. п.).
- **5.6** Калибровка магнитометра осуществляется не реже одного раза в год и после ремонта в соответствии с методическими указаниями "Магнитометр МХ-10. Методы и средства калибровки Иа2.778.009 МУ".

6 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

6.1 Возможные неисправности и способы их устранения приведены в табл. 6.1.

Таблица 6.1

Возможная	Вероятная причина	Способ устранения
неисправность		
При включении ин-	Отсутствует контакт	Зачистить контакты
дикатор магнитомет-	батареи питания	колодки и батареи
ра не светится		питания
При включении на	Напряжение батареи	Заменить батарею
индикаторе магнито-	питания ниже нормы	питания на новую
метра горит индика-		
тор разряда батарей		

7 ПРАВИЛА ТРАНСПОРТИРОВАНИЯ И ХРАНЕНИЯ

- **7.1** Во время транспортирования и хранения магнитометр должен быть уложен в футляр из ударопрочного полистирола и упакован в ящик из гофрированного картона по ГОСТ9142-84. Свободное пространство в футляре и транспортной таре должно быть заполнено прокладочным материалом по ГОСТ23170-78.
- **7.2** Транспортирование упакованных магнитометров может производиться любым видом крытого транспорта (кроме морского) и в отапливаемых отсеках самолетов.
- **7.3** Магнитометр в упаковке для транспортирования выдерживает тряску с ускорением до 30m/c^2 при частоте ударов от 80 до 120 в минуту или 15000 ударов с тем же ускорением.
 - 7.4 Условия транспортирования:
 - * температура от минус 50 до +50°C
 - * относительная влажность до 85% при температуре +25°C
- 7.5 Упакованные магнитометры должны храниться на стеллажах в сухом помещении в соответствии с условиями хранения по ГОСТ15150-69. В помещении для хранения не должно быть паров кислот и щелочей, а также газов, вызывающих коррозию и разрушающих изоляцию (условия хранения 1 по ГОСТ15150-69).