

Твердомеры универсальные ТВМ модификации **ТВМ 1500[®] ТВМ 1800[®] ТВМ-УД**[®]

Зарегистрированы в Государственном реестре СИ РФ под № 78544-20

(Паспорт, Руководство по эксплуатации №РЭ 26.51.62-001-11548758-2019 и Методика Поверки №113-265-2019)

ЗАЯВЛЕНИЯ:

- «Знания принадлежат человечеству» исходя из этого принципа материалы данной документации являются свободными для использования без какого-либо разрешения со стороны компании ВОСТОК-7
 - Все сведения в данной документации изложены добросовестно.
- ullet В конструкцию изделий могут быть внесены незначительные изменения без предварительного уведомления.
- Любые замечания, исправления или пожелания в наш адрес касательно материалов данной документации и усовершенствования изделий всемерно приветствуются.

ОБРАЩЕНИЯ:

- Благодарим за Ваш выбор продукции компании ВОСТОК-7, изготовленной в соответствии с мировыми стандартами качества. Нами приложены все усилия для того, чтобы Вы были удовлетворены качеством на протяжении всего срока эксплуатации.
- Пожалуйста, уделите время внимательному прочтению данной документации, что позволит использовать изделие на всё 100%. Мы постарались изложить материал простым и доступным языком.
- Обновления и видеоматериалы с инструкциями выложены на сайте: WWW.VOSTOK-7.RU
- Если, несмотря на все наши усилия, Вы столкнётесь с трудностями при эксплуатации или у Вас возникнут уточняющие вопросы, пожалуйста, непременно свяжитесь с нами для получения поддержки.

ПРОСЬБА:

• Напишите отзыв через несколько месяцев эксплуатации нашего средства измерения. Отзыв необходим реальный, включая негативные оценки, если таковые будут, а также пожелания по улучшению изделий. Реальная обратная связь нам необходима для модернизации средств измерений Восток-7, их адаптации под нужды пользователей.

ПРЕДПРИЯТИЕ-ИЗГОТОВИТЕЛЬ:

ООО «Восток-7»; ОГРН 1127746747897; ИНН/КПП 7717734230/771701001;

г. Москва, метро "Алексеевская", проезд Ольминского, д.3А, офис 929;

Контакты: +7 (495) 740-06-12 / www.vostok-7.ru / $\underline{info@vostok-7.ru}$

Федеральным агентством по техническому регулированию и метрологии ООО "Восток-7" зарегистрировано в реестре по производству эталонов единиц величин, стандартных образцов и средств измерений за номером 120СИ0023400319.

ОГЛАВЛЕНИЕ.

1.	ТВЕРДОМЕРЫ УНИВЕРСАЛЬНЫЕ ТВМ. НАЗНАЧЕНИЕ. ОПИСАНИЕ	4
2.	УСЛОВИЯ ДЛЯ ПРОВЕДЕНИЯ КОНТРОЛЯ ТВЁРДОСТИ	7
3.	МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	11
4.	комплектность.	15
5.	УСТРОЙСТВО ТВЕРДОМЕРА	22
6.	РАБОТА С ТВЕРДОМЕРОМ.	26
6.1.	ТВМ 1500. Режим ИЗМЕРЕНИЕ — настройка параметров	28
6.2.	ТВМ 1500. Режим ИЗМЕРЕНИЕ ТВЁРДОСТИ — работа с твердомером	31
6.3.	ТВМ 1500. Раздел КАЛИБРОВКА	33
6.4.	ТВМ 1800. Раздел ПАРАМЕТРЫ	35
6.5.	ТВМ 1800. Раздел СТАТИСТИКА	37
6.6.	ТВМ 1800. Раздел КАЛИБРОВКА.	38
6.7.	ТВМ 1800. Раздел УСТАНОВКА НАСТРОЕК	42
6.8.	ТВМ 1800. Режим измерения твёрдости	43
6.9.	ТВМ-УД. Начало работы.	44
6.10.	ТВМ-УД. Работа с датчиком ультразвуковым тип У	45
6.11.	ТВМ-УД. Работа с датчиком динамическим тип Д	46
6.12.	ТВМ-УД. Работа с данными измерений	47
6.13.	ТВМ-УД. Работа с памятью прибора	48
7.	ОБСЛУЖИВАНИЕ И ХРАНЕНИЕ	50
8.	УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ И НЕКОРРЕКТНЫХ ИЗМЕРЕНИЙ	52
9.	МЕТОДИКА ПОВЕРКИ	53
10. ИЛЕН	ТВЕРДОМЕРЫ ТВМ 1500, ТВМ 1800 И ТВМ-УД. ГАРАНТИЯ. ИЗГОТОВИТЕЛЬ. ІТИФИКАЦИОННЫЕ ДАННЫЕ	59

1. ТВЕРДОМЕРЫ УНИВЕРСАЛЬНЫЕ ТВМ. НАЗНАЧЕНИЕ. ОПИСАНИЕ.

Твердомеры универсальные ТВМ (далее - твердомеры) являются средством измерения, зарегистрированным в Государственном реестре СИ РФ под №78544-20 (№57899-14 для моделей ТВМ 1500 и ТВМ 1800 по 2019 г.в.), утверждённая методика поверки МП 113-265-2019 (МП 44-251-2014 для моделей ТВМ 1500 и ТВМ 1800 по 2019 г.в.), интервал между поверками -1 (один) год.

Настоящий паспорт объединён с техническим описанием, руководством по эксплуатации и утверждённой методикой поверки твердомеров универсальных ТВМ.

Назначение средства измерений.

Твердомеры портативные универсальные модификаций ТВМ 1500 и ТВМ 1800 (только динамические датчики) и модификации ТВМ-УД (комбинированный: датчики ультразвуковой и динамический) предназначены для измерения твёрдости изделий из металлов и сплавов. Твердомеры применяются для проведения контроля твёрдости образца без разрушения его структуры в лабораторных и цеховых условиях (особенно на машиностроительных предприятиях) при контроле качества изделий, а также при входном контроле сырья и заготовок.

Описание средства измерений.

Твердомер портативный измеряет твёрдость по методу Либа (датчик динамический) или UCI методом (датчик ультразвуковой) в зависимости от типа подключенного датчика. Измеренное значение твёрдости отображается на дисплее по шкалам Роквелл, Бринелль, Виккерс и Шора D (HR, HB, HV и HSD соответственно), а также по шкале временного сопротивления $\sigma_{\rm B}$ ($R_{\rm m}$), которая позволяет в соответствии с ГОСТ 22761-77 определить временное сопротивление при растяжении в месте испытания для изделий из конструкционных углеродистых сталей перлитного класса путём автоматического пересчёта со шкалы твёрдости Бринелля.

Модификации.

Твердомеры универсальные имеют различные модели, которые отличаются комплектацией датчиков, метрологическими и техническими характеристикам.

ТВМ 1500 и ТВМ 1800

Твердомеры выполнены в виде электронного блока и датчика с индентором в едином корпусе: при таком моноблочном исполнении исключён риск обрыва соединительного кабеля между блоком и индентором - частая "болезнь" твердомеров с раздельными элементами электронного блоки и датчика с индентором. Корпус твердомера обладает миниатюрными размерами для удобного размещения в ладони.

Электронный блок твердомера позволяет сохранять результаты измерений в памяти твердомера, вычислять среднее значение из серии измерений с отображением на дисплее, имеется функция автоматического отключения питания прибора с целью увеличения продолжительности работы с прибором на одном заряде батареи. Ударный боёк индентора твердомера изготовлен из твёрдосплавного шарика производства швейцарской фирмы Saphirwerk Industrieprodukt AG, что позволяет

гарантировать десятки тысяч измерений и десятилетия эксплуатации прибора без замены индентора и без потери точности измерений.

Твердомеры имеют необходимый функционал для измерений по всем стандартизированным в России шкалам твёрдости Роквелла (HR), Бринелля (HB), Виккерса (HV) и Шора D (HSD), при этом диапазон по шкале Бринелль (HB) расширен с целью контроля твёрдости изделий из мягких металлов: алюминия, меди, латуни и др. - отсутствует в приборах других российских производителей.

В модификации ТВМ 1500 взвод бойка осуществляется шомполом, который для удобства всегда привязан к корпусу твердомера. Среднее время 1-го измерения твёрдости прибора с шомпольным взводом составляет 4-7 секунд. В твердомере используется индентор тип D, замена на другие типы инденторов не предусмотрена. В электронный блок твердомера заведены 9 типов измеряемых металлов: различные стали, чугун, алюминий, латунь, бронза и медь, что позволяет получить максимально точные результаты значений твёрдости по шкалам Роквелла (НR), Бринелля (НВ), Виккерса (НV) и Шора D (HSD), связь электронного блока с компьютером не предусмотрена.

В модификации ТВМ 1800 взвод бойка автоматический (телескопическая конструкция). Электронный блок твердомера позволяет производить автоматическую компенсацию направления удара (360°), обмениваться данными с компьютером через USB-порт. В электронный блок заведены 10 типов измеряемых металлов: различные стали, чугун, алюминий, латунь, бронза и медь, что позволяет получить максимально точные результаты значений твёрдости по шкалам Роквелла (HR), Бринелля (HB), Виккерса (HV) и Шора D (HSD).

Телескопическая конструкция для взвода бойка - время одного измерения твёрдости составляет 1-2 секунды. В твердомере используется индентор тип D, также возможна его замена на индентор тип DL (опционально, поставляется по запросу), который разработан для измерения твёрдости в труднодоступных местах на узких поверхностях и краях (зубья шестерён) или в технологических углублениях (отверстия, пазы и шлицы). Процедура замены базового бойка тип D на опциональный боёк тип DL проста и занимает не более 10 с времени. Индентор тип DL используется для контроля твёрдости в труднодоступных местах глубиной до 50 мм и \emptyset до 4 мм, недоступных для применения базового индентора тип D. Важно:

- при замене бойка тип D на боёк тип DL и обратной замене каждый раз необходимо производить процедуру калибровки твердомера;
- по умолчанию Свидетельство о поверке твердомера выписывается только на прибор с бойком тип "D", на прибор с бойком тип DL по запросу.
- ТВМ 1800 с датчиком тип DL единственный в России прибор с данным типом датчика, зарегистрированный в госреестре и на который можно оформить Свидетельство о поверке.

ТВМ-УД

Твердомеры выполнены в раздельном виде составных частей: электронный блок и съёмные датчики, подключаемые к электронному блоку соединительным кабелем. Электронный блок твердомера позволяет обмениваться данными с

компьютером через USB-порт (на заказ). Измерение твёрдости по шкалам Роквелла "С" (HRC), Бринелля (HB) и Виккерса (HV). По заказу модификация ТВМ-УД может комплектоваться различными съёмными датчиками:

- динамический ТВМ-УД с датчиком тип D со Свидетельством о поверке
- ультразвуковой ТВМ-У с датчиком ультразвуковым со Свидетельством о поверке
- комбинированный ТВМ-УД с датчиками ультразвуковым и динамическим тип D со Свидетельством о поверке

С датчиком ультразвуковым время 1-го измерения твёрдости составляет ок. 2 секунд. В датчике динамическом взвод бойка осуществляется шомполом, который для удобства вставляется в кожаный чехол электронного блока твердомера. Среднее время 1-го измерения твёрдости прибора с шомпольным взводом составляет 4-7 секунд. Универсальность твердомера модификации ТВМ-УД заключается в том, что его можно приобрести сперва с каким-либо одним типом датчика (напр. ультразвуковым), а после приобрести другой тип датчика (напр. динамический), тем самым произведя модернизацию (улучшение, апгрейд) прибора до уровня комбинированный (с датчиками ультразвуковым и динамическим тип D).

Общий вид твердомеров представлен на рисунке 1. Электронный блок Электронный блок твердомеров твердомеров модификации ТВМ-УД модификации **TBM** 1500 ультразвуковым динамическим датчиком типа D датчиком динамическим датчиком типа D Электронный Электронный блок блок твердомеров твердомеров модификации **TBM** модификации **TBM** 1800 1800 динамическим датчиком типа D дополнительным сменным датчиком типа DL

2. УСЛОВИЯ ДЛЯ ПРОВЕДЕНИЯ КОНТРОЛЯ ТВЁРДОСТИ.

- 2.1. Требования к внешним условиям.
- Измерения должны проводиться при условии отсутствия воздействия вибрации и ударов на твердомер и контролируемое изделие.
- В момент проведения измерений изделие должно быть неподвижно, а датчик (ультразвуковой или динамический) установлен перпендикулярно (90°) зоне измерения. В момент измерения любое перемещение датчика по поверхности изделия недопустимо!

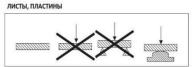
- 2.2. Требования к контролируемому изделию:
- 2.3. Состояние изделия.
- На время проведения измерений изделие должно находиться в разгруженном состоянии от основных рабочих нагрузок.
- Измеряемое изделие не должно быть намагничено его магнитное поле может занизить результат измерения (только для датчика динамического типа).
- Из-за высокого модуля упругости ряд сталей (аустенитные стали 300-й серии, ледебуритные и жаропрочные инструментальные стали) могут занизить результат измерений. Контроль следует проводить в поперечных сечениях таких стальных изделий (только для датчика динамического типа).
- 2.3.1. **Масса изделия** должна соответствовать параметрам, указанным в технических характеристиках твердомера.

В базовой комплектации твердомеры поставляются с датчиком динамическим тип D, по заявке модификации ТВМ 1800 и ТВМ-УД могут комплектоваться дополнительными датчиками DL, G и др.

Динамический датчик создаёт большую нагрузку в момент удара:

ļ	Тип датчика	D/D+15/DL	G	С	İ
Ï	Максимальная сила удара	900N	2500N	500N	

Тяжёлые цельные изделия не требуют дополнительных мероприятий. Средние и лёгкие изделия могут сместиться под этим усилием, в результате чего полученные значения твёрдости будут некорректны. Самые лёгкие изделия требуют нанесения негустой консистентной смазки (напр. ЦИАТИМ) или контактной жидкости между изделием и поддерживающим основанием. Использование зажимов или тисков для фиксации изделий недопустимо, т.к. в этом случае изделие испытывает нагрузку и давление — измеренные значения твёрдости будут некорректны.

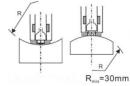

Тип	Классификация изделий по массе и необходимости					
датчика	дополнительных мероприятий для измерения твёрдости					
	Тяжёлые	Средние	Лёгкие			
D/D+15/DL	> 5 кг	25 кг	0,052 кг			

G	> 15 кг	515 кг	0,55 кг
C	> 1,5 кг	0.51,5 кг	0,020,5 кг
	Не требуется	Требуется	Требуется
	поддерживающего	поддерживающее	поддерживающее
	основания	основание	основание и
			контактная смазка.

Если масса изделия выходит за пределы указанных параметров – воспользуйтесь устройствами и приспособлениями из дополнительной комплектации твердомера.

2.3.2. **Толщина изделия** должна соответствовать параметрам, указанным в технических характеристиках твердомера.

Толщина стенки имеет не меньшее значение, чем масса изделия. Даже у больших и тяжёлых изделий возможно наличие участков с тонкими стенками в месте измерения. Решение в таких случаях — использовать поддерживающее



основание (напр. подложку, поверочную плиту) со стороны нижней поверхности изделия непосредственно под зоной измерения. Массивное основание усиливает изделие, исключая его прогиб во время удара (только для датчика динамического типа).

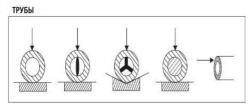
- 2.4. Требования к поверхности контролируемого изделия:
- 2.4.1. **Чистота.** Все методы испытания на твёрдость требуют гладких поверхностей, свободных от влаги, загрязнений (окалина, масло, пыль и т.п.), ржавчины, наклёпа, краски, смазочных материалов, пластмассовых покрытий, предназначенных для защиты от коррозии или металлического покрытия для лучшей проводимости.
- 2.4.2. **Шероховатость** должна соответствовать параметрам, указанным в технических характеристиках твердомера. Слишком большие неровности (шероховатости) приводят к занижению измеренного результата твёрдости и некорректному измерению. Глубина проникновения индентора датчика твердомера должна быть больше в сравнении с шероховатостью поверхности.

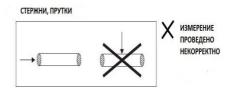
		Требования к шероховатости поверхности					
	ISO	Ra	Rz	Класс шероховатости (устар. ГОСТ 2789-59)			
Датчик динамический тип D	N7	3,2мкм	12,5мкм	5			
Датчик ультразвуковой		2,5мкм	10 мкм	6			

2.4.3. **Радиус** кривизны должен соответствовать параметрам, указанным в технических характеристиках твердомера. При измерении изогнутой поверхности индентор может выдвинуться за нижнюю границу основания датчика (при измерении вогнутой поверхности) или наоборот – не достичь этой границы (при

измерении выгнутой поверхности). Для измерения сферических и цилиндрических поверхностей с радиусом кривизны менее 30мм необходимо использовать комплект опорных насадок, поставляемых как дополнительная комплектация твердомера.

- 2.4.4. **Подготовка поверхности** должна производиться осторожно, чтобы не изменить поверхностную твёрдость из-за перегрева или переохлаждения. Для подготовки поверхности рекомендуется использовать высокоскоростную шлифовальную машинку. Рекомендуемая глубина снимаемого слоя для кованоштампованной поверхности, для труб и поверхности литых деталей до чистого металла.
- 2.5. Требования к измерению упрочнённого поверхностного слоя.


При измерении твёрдости поверхностного слоя металла, подвергнутого наплавлению, напылению, механической, термической и другим видам поверхностной обработки металла толщина поверхностного слоя должна, как минимум, в 10 раз превышать глубину проникновения индентора в изделие (см. размер отпечатка в технических характеристиках твердомера). Если упрочнённый слой слишком тонкий, то индентирование будет проходить через этот слой и часть энергии будет поглощена мягкой основой, что приведёт к неверному измерению упрочнённого поверхностного слоя.


2.6. Требования к измерению проката.

При контроле изделий из проката совпадение направлений измерения датчиком и проката могут привести к занижению результатов измерений, т.к. в направлении проката выше модуль упругости Е. В таких случаях направление измерения датчиком должно быть перпендикулярно направлению проката. Например, при контроле твёрдости цилиндрических объектов контроль должен проводиться в радиальном направлении (обычно направление проката совпадает с осью).

- 2.7. Требования к измерению трубчатых изделий.
- Трубчатые объекты должны быть зафиксированы, чтобы исключить их перекатывание.
- Направление контроля должно быть параллельно силе реакции опоры.

• Если стенки трубы слишком тонкие, то её следует чем-нибудь наполнить

2.8. Требования к притирке лёгких и тонких изделий.

- Соединяемые поверхности измеряемого изделия и поддерживающего основания должны быть очищенными, ровными, расположены параллельно.
- <u>Тонкий</u> слой контактной смазки наноситься между соединяемыми поверхностями. В роли контактной смазки рекомендуется использовать контактную жидкость или негустую консистентную смазку (напр. ЦИАТИМ или др. литол).
- Контролируемое изделие должно быть <u>плотно прижато</u> к поддерживающему основанию.
- Направление расположения датчика должно быть перпендикулярно соединённым изделию и поддерживающему основанию.

Нанесите контактную смазку		

Тщательно выполненная притирка позволяет обеспечить жёсткую связь между контролируемым изделием и поддерживающим основанием, исключив любое вибрирование и смещение изделия при измерениях. В этом случае результаты измерений будут наиболее точными, а разброс показаний – минимальным.

2.9. Требования к количеству и результатам измерений.

• Для определения твёрдости необходимо провести не менее 5 измерений на каждом участке, после чего вычислить среднее значение из полученных результатов.

- Перед началом измерения изделия рекомендуется произвести контрольные измерения на мере твёрдости, чтобы убедиться в том, что твердомер правильно откалиброван.
- Необходимо удалять результаты некорректных (ошибочных) измерений из расчёта среднего значения.
- Расстояние между соседними точками измерения (отпечатками) должно быть не менее 3мм.
- Расстояние между центром измерения и краем поверхности изделия должно быть не менее 5мм.
- Повторные измерения в одной и той же точке не допускаются, т.к. дают завышенные показания твёрдости изделия из-за наклёпа металла в зоне отпечатка.

МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ.

Метрологические характеристики

. Начитана разную устанующий и польтории	Значение			
Наименование характеристики	ТВМ-УД	TBM 1500	TBM 1800	
Шкала твёрдости (с поверкой):				
- «А» Роквелла	_	7093	3 HRA	
- «В» Роквелла	_	2510	0 HRB	
- «С» Роквелла	20	70 HRC		
- Бринелля	80650	HB (HBW)		
- Виккерса	80	.950 HV		
Погрешность по шкалам				
твёрдости, не более:				
7093 HRA	— ±2 HRA			
25100 HRB		±3 HRB		
2070 HRC	±2 HRC			
80650 HB (HBW)	±12 HB (HBW)			
80950 HV	±15 HV			
Доп. шкалы (без поверки),				
диапазон/погрешность:				
- Либа HL	— 170960 /			
- Шора D	$3599 / \pm 2 \text{ HSD}$ $3299,5 / \pm 2$			
- Шкала предела прочности R_m/σ_b	$3701700 \pm 5 \text{ H/mm}^2$	3501710	$\pm 5 \text{ H/mm}^2$	
(временного сопротивления при				
растяжении), МПа (Н/мм²)		L	T 22761 77	

*Шкала предела прочности R_m/σ_b позволяет в соответствии с ГОСТ 22761-77 определить временное сопротивление при растяжении в месте испытания для изделий из конструкционных углеродистых сталей перлитного класса путём автоматического пересчёта со шкалы твёрдости Бринелль.

Технические характеристики

Технические характеристики Значение 3					
Наименование характеристики	ТВМ-УД ТВМ 1500 ТВМ 1				
Электропитание сети:	тын эд	1101111300	1 DIVI 1000		
- напряжение, В		220	+ 22		
- частота, Гц		220 ± 22 50 ± 1			
Тип элемента питания	заменяемая	заменяемая	незаменяе-		
	аккум. бат.,	аккум. бат.,	мая аккум.		
	тип АА	тип "Крона"	батарея		
Напряжение питания от аккум. бат., В	3,0	9,0	5,2		
Потребляемая мощность, В А, не более	—	·	,3		
Время полной зарядки, ч	46	1215	23		
Время непрерывной работы при		[1.5		
полной зарядке, ч, не менее	1,5	2	1,5		
Автомат. отключение питания, с, через	180	100	40		
К-во запрограммированных типов		9	10		
металлов	—	9	10		
Возможность использования других					
типов ударных бойков, кроме базового	ДА	HET	ДА		
типа D					
Передача данных на компьютер, ПО	ДА	HET	ДА		
Память (к-во сохранённых значений)	2000	99	3996		
Статистика значений из серии					
измерений (среднее/макс./мин.),		ДА			
удаление ошибок		,			
Время на каждый замер твёрдости, с:					
- динамический датчик D (*DL, G и др.)	47 / 12*	47	12		
- ультразвуковой датчик	23	—			
Габаритные размеры электронного	122*65*23	100*65*32	148*45*22		
блока, мм, не более (В*Ш*Г)					
Габаритные размеры ультразвукового	145*30	_	_		
датчика, мм, не более (В*Ø)					
Габаритные размеры динамического	86*22 (D)	_	50*4 (DL)		
датчика типа D/DL, мм, не более (В*Ø)			`		
Масса твердомера (с датчиками и элементами питания), кг, не более	0,50	0,15	0,11		
		<u> </u>			
Условия окружающей среды: - температура при эксплуатации, °С					
- температура при эксплуатации, С - температура при хранении, °С		-5+40			
- относительная влажность, %		-40+60			
- относительная влажность, 70 ВАЖНО: измерения твёрдости		3080			
проводятся при температуре		3060			
просодиней при темперитуре	<u> </u>				

окружающей среды от $+10$ до $+35$ 0 C согласно требованиям ГОСТ $9012-59$; $9013-59$; P ИСО $6507-1-2007$. При разногласиях в оценке качества металлопродукции измерения проводятся при температуре 23 ± 5 0 C.	
Срок службы, лет, не менее	10
Гарантийный срок эксплуатации, лет	1

Характеристики датчиков ультразвукового и динамических тип D и DL

Шероховатость контролируемой поверхности, не более, R _a :	
• датчик ультразвуковой	2,5
 датчик динамический тип D и DL 	3,2
Радиус кривизны выпуклой / вогнутой измеряемой поверхности без	
использования опорных колец и насадок, не менее, мм	
• датчик ультразвуковой	5 / 10
 датчик динамический тип D и DL 	15 / 30
Масса контролируемого изделия, не менее, кг:	
• датчик ультразвуковой	0,05
• датчик динамический тип D и DL:	
- без использования дополнительных мероприятий	5
- с использованием поддерживающего основания	25
- с использованием поддерживающего основания и контактной смазки	0,05
Толщина контролируемого изделия, не менее, мм:	
• датчик ультразвуковой	1
• датчик динамический тип D и DL:	
- без использования дополнительных мероприятий	12
- с использованием дополнительных мероприятий	5
Мин. глубина упрочнённого поверхностного слоя для измерения, мм:	
• датчик ультразвуковой	0,1
• датчик динамический тип D и DL	0,8
Размер отпечатка на поверхности изделия твёрдостью 45 HRC, мкм:	
• датчик ультразвуковой (длина диагонали/глубина)	70 / 10
• датчик динамический тип D и DL (диаметр/глубина)	700 / 300
Мин. расстояние между соседними точками измерений (отпечатками)	
/ центром точки измерения и краем поверхности изделия, мм:	
• датчик ультразвуковой	1 / 1
• датчик динамический тип D и DL	3 / 5
Мин. диаметр площадки для установки датчика на изделии, мм:	
• датчик ультразвуковой	3
• датчик динамический тип D и DL	10

Ресурс датчиков (мин. кол-во измерений):				
• датчик ультразвуковой	200.000			
• датчик динамический тип D и DL	600.000			
Датчик ультразвуковой – усилие нажатия, не менее, Н				
Датчик динамический тип D – диаметр опорного кольца датчика, мм	20,0			
Датчик динамический DL – диаметр/длина удлинённой насадки, мм	4/50			

Диапазон	измерений	і и перевода	(для ТВМ	1500 и Т	ГВМ 1800).		
	HLD	HRC	HRB	HRA	HB	HV	HSD	σ _b
 	<u> </u>	<u> </u>	L	<u> </u>		1	L	H/mm ²
Cmarr, v	i	ударный дат	чик типа D (ба:	зовая комп	пектация)	T	22.5	
Сталь и	300900	20.0 67.0	50.6 00.5	20 00	80647	80	32,5	375
литая	300900	20,067,9	59,699,5	3088	80647	940	 99,5	1710
СТАЛЬ			ļ	 	 	 -	99,3	
Инструмен тальная					ļ	80		1170
тальная углеродист	300840	20,567,1	•		ļ	898		2639
ая сталь					ļ	070	İ	2039
		 	}		 	 -	}	
Нержавею щая сталь								
щая сталь и	300800	19,662,4	46,5		85655	85		740
и жаростойк	300800	19,002,4	101,7		65655	802		1725
ая сталь								
}		 	}	<u> </u>	 	90	}	
Серый	360650	2159	24100		93334	698		
чугун Чугун с		 			 	096	 	
					131	96		
шаровидн ым	400660	2160	24100		387	724		
•					367	124		
графитом			ļ	<u> </u>	<u> </u>	 	 	
Литейный алюминие	174560		2485		30159	22		
1	1/4360		2485		30139	193		
вый сплав		 	ļ	 	<u> </u>	 	ļ 	
Латунь с высоким								
i	200550		13,595,3		40173	l	İ	
содержани ем цинка								
Оловянист		 			 	 	}	
ая бронза	300700		14100		60290			
медь	200690	-	14100		45315	 	}	
Поковки	200090		14100		45515	 	}	
стальные								
(только					142			
для ТВМ					651			
1800)								
1300)			. (лоп компле	ктания ппо	TRM 1800)	1	L	L
Сталь и	.	Датчик типа D	L GOII. KOMIDIC	ктации для	1DW 1000)	T	30,6	
литая		20,668,2	37,099,9		81646	80	30,0	
сталь		20,000,2	37,0,		01040	950	96,8	
Инструмен		 	<u> </u>			t		
тальная								
углеродист		20,567,1						
ая сталь								
an clasib		<u> </u>	L		<u> </u>	1	L	L

4. КОМПЛЕКТНОСТЬ.

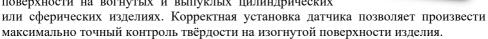
БАЗОВАЯ КОМПЛЕКТАЦИЯ				
(вкл. в стоимость	гвердомера)			
Наименование	ТВМ-УД	TBM 1500	TBM 1800	
Твердомер универсальный ТВМ в составе:				
- электронный блок	1 шт.	1 шт.	1 шт.	
- ультразвуковой датчик	по заказу		—	
- динамический датчик типа D	по заказу	1 шт.	1 шт.	
- динамический датчик типа DL	<u> </u>	<u> </u>	по заказу	
Кабель USB	1 шт.		1 шт.	
Диск с ПО	по заказу		1 шт.	
Щётка для очистки индентора	— 1 шт.		шт.	
Заменяемые элементы питания	2 шт. —			
Чехол для электронного блока	1 шт. —			
Сетевое зарядное устройство	1 шт.			
Чемодан для переноски	1 шт.			
Объединённые Паспорт, Руководство по эксплуатации, Методика поверки	1 экз.			
Свидетельство о поверке		1 экз.		

ДОПОЛНИТЕЛЬНАЯ КОМПЛЕКТАЦИЯ						
(возможность заказа дополнительно)	(возможность заказа дополнительно)					
11	TBM	TBM	TBM			
Наименование	-УД	1500	1800			
Твердомер универсальный модификаций ТВМ:						
- ультразвуковой датчик	+	_	—			
- динамический датчик типа D (или боёк для замены)	+	+	+			
- динамический датчик типа DL	+	_	+			
- динамический датчик типа DC	+	_	—			
 динамический датчик типа С 	+	_	—			
- динамический датчик типа D+15	+	_	—			
- динамический датчик типа Е	+	_	—			
- динамический датчик типа G	+	—	—			
Комплект опорных колец и насадок:						
- к динамическим датчикам	+	+	+			
- к ультразвуковому датчику	+	—	—			
Штатив для датчика ультразвукового	+					
Шлифовальная машинка для уменьшения шероховатости +						
Контактная смазка для притирки лёгких и тонких изделий		+				
Меры твёрдости по шкалам HRA, HRB, HRC, HB, HV		+				

Датчики динамические типов D, DL, DC, C, D+15, E и G

<u>Датчи</u>	ки динамические типов D, DL, DC, C, D+15, E и G				
Тип	Назначение датчика				
	Датчик со стандартной энергией удара для плоских поверхностей с шероховатостью ≤3,2 Ra . Входит в состав базовой комплектации твердомера и всегда поставляется с				
D	прибором. Другие типы датчиков лишь дополняют комплектацию прибора, но не заменяют базовый датчик тип D. Важно: Свидетельство о поверке оформляется только на твердомер с датчиком тип D (и бойком тип DL для ТВМ 1800), на другие датчики оформляется Свидетельство о калибровке (по заказу).				
DC	Укороченный датчик для измерения в узких местах, внутри труб, в отверстиях деталей и пр.				
DL	Датчик с удлинённой насадкой для контроля твёрдости в труднодоступных местах на узких поверхностях (зубья шестерён) или в длинных и узких каналах, технологических углублениях (отверстия, пазы и шлицы) глубиной до 50 мм и диаметром до 4 мм. Важно: Свидетельство о поверке оформляется только на твердомер модификации ТВМ 1800 с датчиком (бойком) тип DL.				
С	Датчик для лёгких и тонких (<10 мм) изделий с закалённой поверхностью и измерения твёрдости поверхностных слоев после упрочнения с шероховатостью ≤0,4 Ra . Оставляет минимальный след отпечатка на изделии.				
D+15	Датчик для контроля твёрдости на деталях сложной формы с труднодоступными зонами — в небольших углублениях: в канавках, пазах, углублениях глубиной до 18 мм и диаметром до 14 мм.				
E	Датчик с пониженной энергией удара для плоских поверхностей с шероховатостью ≤1,6 Ra . Датчик с алмазным индентором предназначен для контроля изделий с высокой твёрдостью с минимальным повреждением поверхности (оставляет едва видимый след-отпечаток).				
G	Датчик с повышенной энергией удара для плоских поверхностей с грубой поверхностью с шероховатостью ≤7,2 Ra. Предназначен для измерения твёрдости изделий с высокой шероховатостью, следами окалины и ржавчины, металлов с крупнозернистой структурой (напр. серый чугун), а таже для измерений на крупногабаритных отливках и поковках.				

Технические характеристики датчиков динамических D, DL, DC, C, D+15 и G


На	D/DC/DL	D+15	C	G	
Энергия удара, м	11,0	11,0	2,7	90,0	
Масса ударного	тела, гр	5,5 / 5,5 / 7,3	7,8	3,0	20,0
Твёрдость матер	иала индентора, HV	1600	1600	1600	1600
Диаметр шарови	дного индентора, мм	3	3	3	5
Материал шаров	идного индентора	карбид вольфрама			
Диаметр датчика	ı, mm	20	20	20	30
Длина датчика, м	ИМ	147 / 86 / 202	162	141	254
Масса датчика		75 / 50 / 60	80	75	250
Макс. твёрдость	измеряемой детали, HV	940/940/950	940	1000	650
Шероховатость R _a , не более	измеряемой поверхности,	3,2	3,2	0,4	7,0
Мин. масса	без доп. мероприятий	5	5	1,5	15
измеряемой	с доп. мероприятиями	2	2	0,5	5
детали, кг	с основанием и смазкой	0,05	0,1	0,02	0,5
Мин. толщина	с основанием и смазкой	5	5	1	10
измеряемой детали, мм	закалённой поверхности	0,8	0,8	0,2	1,2
Размер отпечатка	а шаровидного индентора на	и изделии с твёрд	остью п	оверхно	сти
300 HV	диаметр отпечатка, мм	0,54	0,54	0,38	1,03
300 H V	глубина отпечатка, мм	24	24	12	53
600 HV	диаметр отпечатка, мм	0,54	0,54	0,32	0,90
000 H V	глубина отпечатка, мм	17	17	8	41
800 HW	диаметр отпечатка, мм	0,35	0,35	0,35	
800 HV	глубина отпечатка, мм	10	10	7	

Комплект опорных колец и насадок.

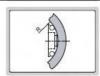
Твердомер производит точный контроль твёрдости только тогда, когда его датчик расположен строго вертикально к измеряемой

поверхности. Опорные кольца и насадки предназначены для установки датчика строго вертикально к измеряемой поверхности на вогнутых и выпуклых цилиндрических

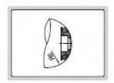
Необходимое опорное кольцо или насадка прикручивается на место опорного кольца из базовой комплектации твердомера. Для измерения на изогнутых

поверхностях выпускается комплект из 12 различных колец и насадок для всех типов твердомеров, произведённых по международным стандартам ASTM A956 (2006) и DIN50156 (2007), включая модификации ТВМ 1500 и ТВМ 1800.

 Комплект опорных колец и насадок для ударных датчиков типов D; DC; C, E


 № Тип
 Размер
 Вид поверхности для контроля твёрдости:

1	Z10-15	20×20×7.5 мм	Выпуклая цилиндрическая поверхность с радиусом R10 - R15
2	Z14,5-30	20×20×6.5 мм	Выпуклая цилиндрическая поверхность с радиусом R14,5 - R30
3	Z25-50	20×20×6.5 мм	Выпуклая цилиндрическая поверхность с радиусом R25 - R50


4	HZ11-13	20×18×5 мм	Вогнутая цилиндрическая поверхность с радиусом R11 - R13
5	HZ12.5-17	20×20×5 мм	Вогнутая цилиндрическая поверхность с радиусом R12,5 - R17
6	HZ16.5-30	20×20×5 мм	Вогнутая цилиндрическая поверхность с радиусом R16,5 - R30

7	K10-15	Ø 20×7.7 мм	Выпуклая сферическая поверхность с радиусом R10 - R15
8	K14,5-30	Ø 20×6.7 мм	Выпуклая сферическая поверхность R14,5 - R30
9	HK11-13	Ø 17×5 мм	Выпуклая сферическая поверхность с радиусом R11 - R13

10	HK12.5-17	Ø 18×5 мм	Вогнутая сферическая поверхность с радиусом R12,5 - R17
11	HK16.5-30	Ø 20×5 мм	Вогнутая сферическая поверхность с радиусом R16,5 - R30

12	UN	52×20×16 мм	Нестандартные поверхности, минимальный радиус R10 - ∞

Штатив для датчика ультразвукового

Предназначен для закрепления в нём датчика обеспечивает твердомера равномерное механическое нагружение в процессе измерения, а также основное требование для любого метода измерения твёрдости – перпендикулярность датчика к измеряемой поверхности. Штатив позволяет получить б'ольшую точность измерения твёрдости контролируемого Механическое изделия. нагружение стабильное позволяет создать прижимное усилие, обеспечивает повторяемость результатов, устраняя ошибки измерений твёрдости при нажатии датчика вручную. Штатив востребован лабораторных испытаний проведении требованиями точности повышенными к результатов измерений, особенно при замере твёрдости на малых и тонких изделиях, а также при проведении серийных (массовых) испытаний измерений большого количества твёрдости течение рабочей смены. Использование штатива позволяет уменьшить погрешность измерений в несколько раз!

Штатив может быть приобретён совместно твердомером, либо приобретён позднее необходимости его использования, например для массовых испытаний. Ввиду необходимости приложения к датчику усилия нажатия в 50 Н (5,09 кгс, что более 5 кг) при каждом замере твёрдости (а таких замеров на КАЖДОМ изделии по ГОСТ должно быть не менее 5-ти для вычисления среднего значения твёрдости этого изделия) использование штатива является настоятельной рекомендацией тренированному мужчине произвести подряд 20...40 замеров с плавным усилием нажатия датчика ок. 5 кг без колебаний руки на контролируемом изделии, при этом выдерживая строгую перпендикулярность датчика с измеряемой поверхности. Особенно рекомендуется использовать штатив для измерения лёгких изделий малого размера.

Технические характеристики:

• макс. высота контролируемого изделия – 550 мм

• рабочии ход рычага с возвратнои пружинои
– 50 мм
• V-образный рабочий столик для измерения
деталей цилиндрической формы: труб, прутков и
т.п. (по заказу)
• Вес брутто 2,4 кг, В*Ш*Г упаковки
255*105*100 304

Схема сборки	Порядок работы	
CXEMA 1	Обозна	чения:
9.	7. Стойка в сборе	13. Основание
	8. Квадратная гайка	14. Насадка
8 9	9. Регулировка высоты	укороченная
10	10. Корпус	15. Насадка
7	11. Держатель датчика	стандартная
11	12. Болт основания	16. Рычаг с пружиной
	• Собрать штатив соглас	сно схеме (1).
	• Открутить насадку ста	ндартную (15).
12	• Вставить датчик в дера	жатель датчика (11).
000	• Плотно накрутить наса	адку укороченную (14).
	• Разместить на основании (13) изделие.	
13	• Регулировкой высоты (9) обеспечить расстояние	
	от контролируемой поверхности изделия до	
16	алмазного наконечник	а датчика не менее 10 мм.
/10	• Плавно опустить вниз рычаг с возвратной	
	пружиной (16) до звукового сигнала твердомера,	
		ть окончание измерения.
• 0 - 1 30	• Плавно отпустить рыч	аг с пружиной (16) вверх.
0 97 25	• Сместить контролируе	емое изделие на основании
	для следующего из	
14 15		твии с требованиями п. 3
11	«Метрологические	и технические
	характеристики».	_
		5 измерений на каждом
		числить среднее значение
	из полученных результ	
0		й цилиндрической формы:
		комендуется использовать
	V-образный рабочий с	толик (по заказу)

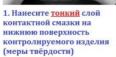
Шлифовальная машинка для уменьшения шероховатости

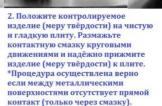
Назначение: подготовки поверхности ДЛЯ соответствии с требованиями поверхности К 4.1. контролируемого изделия п. Π. «Метрологические и технические характеристики». обеспечивает надлежащую шлифовку поверхности в точках измерения твёрдости. Применяется ДЛЯ подготовки

Применяется для подготовки шероховатой поверхности перед измерением датчиками динамическими и ультразвуковыми при наличии:

- ржавчины и др. видов коррозии;
- окалины:
- наклёпа:
- краски и др. покрытий в зоне замера;

• сварных швов в зоне измерения




Контактная смазка для притирки лёгких и тонких изделий

Назначение: для притирки к поверочной плите или любой ровной гладкой поверхности малых, тонких и лёгких изделий, а также мер твёрдости по шкалам HRA, HRB, HRC, HB, HV при измерении датчиком твердомера портативного типа: динамическим или ультразвуковым.

Использование контактной смазки позволяет избежать колебаний, вибрации и смещения контролируемого изделия в процессе измерения твёрдости, что особенно важно при осуществлении процедур калибровки и поверки твердомеров портативных на мерах твёрдости по ГОСТ 9031-75.

3. Установите датчик твердомера вертикально на контролируемое изделие (меру твёрдости) и проведите измерение. *Вибрация и смещение изделия исключены.

Меры твёрдости по шкалам HRA, HRB, HRC, HRN, HRT, HB, HV

Назначение: для воспроизведения твёрдости металлов по стандартизированным шкалам твёрдости. Меры твёрдости применяются для калибровки или поверки (что применимо) приборов для измерения твёрдости металлов по методам:

(что применимо) приборов для измерения твёрдости металлов по методам:						
Роквелл	Супер-Роквелл	Бринелль	Виккерс			
(ΓΟCT 9013-59)	(ГОСТ 22975-78)	(ГОСТ 9012-59)	(ГОСТ 2999-75)			
TOUTION OF BEAUTY SHAPE TOUTION OF BEAUTY SHAPE ACTION THE BEAUTY SHAPE TOUTION OF BEAUTY SHAPE TOUTION OF BEAUTY SHAPE SOCIOL OF BEAUTY SHAPE BOCTOR OF BEAUTY SHAPE	The control of the co		NOTES ON CONTROL NOTES ON CON			

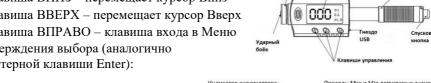
5. УСТРОЙСТВО ТВЕРДОМЕРА.

5.1. TBM 1500.

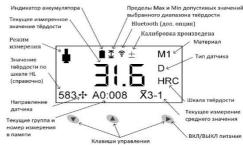
5.1.1. Электронный блок и ударный датчик в едином корпусе.

Клавиша М	Клавиша С		
• Меню	• Изменение настроек		
• Вычисление значений (Среднее, Максимальное, Минимальное)	• Удаление некорректных результатов измерений		
• Увеличить значение	• Уменьшить значение.		
	• Память		

5.1.2. Дисплей.



5.2 TBM 1800.


5.2.1. Электронный блок и ударный датчик в едином корпусе.

Функции клавиш управления:

- ▼: Клавиша ВНИЗ перемещает курсор Вниз
- **▲**: Клавиша BBEPX перемещает курсор Вверх
- ▶: Клавиша ВПРАВО клавиша входа в Меню и подтверждения выбора (аналогично компьютерной клавиши Enter):

5.2.2. Дисплей.

5.3. ТВМ-УД.

Электронный блок.

Электронный блок твердомера осуществляет приём частотного сигнала от датчика, преобразование его в единицы твёрдости, вывод результатов измерений на дисплей, статистическую обработку и другие функции данного твердомера.

На лицевой панели электронного блока расположен графический дисплей и клавиатура из 4-х кнопок: Клавиша питания, Ввод (Enter) и стрелок Вверх/Вниз для перелистывания меню.

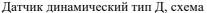
На верхней торцевой стенке твердомера расположены разъёмы для подключения датчиков и кабеля для связи с компьютером.

На задней панели твердомера расположена крышка батарейного отсека, и табличка по ГОСТ 12969, на которой указаны:

- наименование предприятия-изготовителя;
- наименование твердомера;
- заводской номер твердомера.

5.3.2. Датчик ультразвуковой тип У.

Датчик состоит из корпуса с навинченной на него защитной насадкой. Внутри корпуса расположен стальной стержень с алмазным наконечником, поджатый силовой пружиной. На стержень наклеены две пары пьезопластин, одна из которых служит для возбуждения колебаний стержня, а другая — для приёма колебаний. При внедрении пирамиды в контролируемое изделие происходит изменение собственной частоты резонатора, определяемое твёрдостью материала. Относительное изменение частоты резонатора преобразуется электронным блоком в значение твёрдости выбранной шкалы и выводится на дисплей.


Насадка служит для защиты стержня от перегрузки и касания стержня посторонним предметом или рукой оператора во время проведения измерения. При измерении твёрдости в труднодоступных местах допустимо снятие насадки, однако дотрагиваться до обнажившегося стержня категорически запрещено.

Если датчик выйдет из строя, либо вы приобрели прибор в комплектации с датчиком иного типа, а после решили докупить датчик этого типа, то всё что вам нужно — подключить новый датчик к электронному блоку и самостоятельно произвести его калибровку на мерах твёрдости. Отправлять твердомер производителю для настройки подключения нового датчика к электронному блоку не нужно!

5.3.3. Датчик динамический тип Д.

Датчик состоит из корпуса, в котором размещены ударный боёк, пружина, спусковая кнопка, а снаружи катушка индуктивности. После нажатия спусковой кнопки пружина толкает ударный боёк (внутри которого размещён магнит, а на конце расположен твёрдосплавный шарик) и он ударяется о контролируемую поверхность и отскакивает. Перемещаясь внутри катушки индуктивности боёк своим магнитным полем наводит в ней ЭДС индукции, величина которой пропорциональна скорости бойка. Сигнал с катушки индуктивности преобразуется электронным блоком в значение твёрдости выбранной шкалы и выводится на дисплей.

Датчик динамический тип Д с кабелем

Метод Либа (HL) относится к неразрушающим методам контроля, однако при его использовании на зеркальных поверхностях отчётливо видны отпечатки, которые оставляет ударный боёк после столкновения с измеряемой поверхностью. Размер отпечатка зависит от типа ударного датчика и твёрдости контролируемого изделия.

Примерный диаметр отпечатка (в мкм) на измеряемой поверхности контролируемых изделий из низколегированной углеродистой стали:

	Датчик динамический
64 HRC	350
55 HRC	449
30 HRC	541

Примерная глубина отпечатка (в мкм) на измеряемой поверхности контролируемых изделий из низколегированной углеродистой стали:

	Датчик динамический		
800 HV	16		
600 HV	28		
300 HV	35		

Если датчик выйдет из строя, либо вы приобрели прибор в комплектации с датчиком иного типа, а после решили докупить датчик этого типа, то всё что вам нужно — подключить новый датчик к электронному блоку и самостоятельно произвести его калибровку на мерах твёрдости. Отправлять твердомер производителю для настройки подключения нового датчика к электронному блоку не нужно!

6. РАБОТА С ТВЕРДОМЕРОМ.

Обязательным требованием работы с твердомером является обеспечение необходимых условий для измерений твёрдости (п. 2). В противном случае полученные результаты будут некорректны, а твердомер может быть повреждён!

TBM 1500.

Питание твердомера.

Для зарядки аккумуляторной батареи используйте блок питания от переменного тока. подключив его твердомеру через разъём зарядки. Одновременная зарядка аккумуляторной батареи и работа с твердомером исключена. Время полной зарядки 12-15 часов.

Для продления работы аккумулятора твердомер оснащён функцией автоматического выключения. Если не

производить измерений или работы с электронным блоком в течение 100 сек, то питание твердомера отключиться.

Включение питания:

- Нажмите Спусковую кнопку вверху прибора твердомер включён.
- На дисплее отобразятся режимы, которые были установлены ранее. Если эти режимы отвечают Вашим запросам к текущему измерению начинайте работу, если нет установите необходимые режимы (для нового твердомера заводские настройки).
- ВАЖНО! Не начинайте измерять твёрдость изделия пока не проверите точность измерений твердомера на мере твёрдости <u>именно той шкалы твёрдости и того диапазона твёрдости</u>, в пределах которого будет производиться

измерение твёрдости контролируемого изделия. При необходимости произведите калибровку твердомера согласно п. 6.3. При выпуске из производства твердомер калибруется на мерах твёрдости Либа (шкала HLD). Для измерения твёрдости в шкалах Роквелл, Супер-Роквелл, Бринелль и Виккерс твердомер необходимо откалибровать на соответствующих мерах твёрдости Роквелл, Супер-Роквелл, Бринелль и Виккерс. Вы можете провести калибровку самостоятельно при наличии мер твёрдости или заказать меры твёрдости как дополнительную комплектацию твердомера.

• Дисплей нового твердомера – заводские настройки:

M1	Сталь и литая сталь
\downarrow	Направление измерения – вниз 90°
HLD	Шкала твёрдости Либа (HL) для датчика типа D

Разделы МЕНЮ, изменение параметров в разделах меню.

Разделы в программном меню твердомера:

ІР МАТЕ ШКАЛ СРЕД	[СОХР ПАМЯ СЕРИ З <i>А</i>	BH
-------------------	-----------------------------	----

Клавиши для управления меню и настройки параметров в разделах меню:

Клавиша М	Клавиша С			
Функции клавиш при настрой	ке режима ИЗМЕРЕНИЯ			
 для входа в меню нажмите и удерживайте в течение 3 сек. кратковременно нажимайте для последовательного перемещения по разделам НАПР-МАТЕ-ШКАЛ и т.д. для выхода из меню нажмите и 	 для изменения параметров в выбранном разделе меню 			
удерживайте в течение 3 сек. Функции клавиш при настройк	е режима КА ПИБРОВКИ			
 для выхода из режима КАЛИБРОВКИ нажмите и удерживайте в течение 3 сек. кратковременно нажимайте для увеличения значения твёрдости на дисплее 	 для входа в режим КАЛИБРОВКИ нажмите и удерживайте в течение 3 сек. кратковременно нажимайте для уменьшения значения твёрдости на дисплее 			

6.1. ТВМ 1500. Режим ИЗМЕРЕНИЕ – настройка параметров.

6.1.1. Раздел "НАПР" – НАПРАВЛЕНИЕ ДАТЧИКА.

Заводскими настройками установлено направление удара ВНИЗ 90° – т.е. контролируемое изделие расположено внизу, а твердомер установлен строго вертикально сверху на изделии. Для измерения твёрдости при ином расположении твердомера и контролируемого

изделия относительно горизонта – выберите соответствующее НАПРАВЛЕНИЕ ДАТЧИКА клавишами ${\bf M}$ и ${\bf C}$:

Нажмите и удерживайте в течение 3 сек. клавишу \mathbf{M} после чего попадёте в раздел меню выбора направления измерения — на экране появиться надпись НАПР.

Нажимайте клавишу $\mathbf C$ для выбора направления положения твердомера в момент проведения измерения. Возможные варианты выбора направления: Вниз 90° / Угол 45° вниз / Горизонтально / Угол 45° вверх / Вверх 90° .

После выбора нужного параметра для продолжения настройки твердомера и перемещения в следующий раздел меню кратковременно нажмите клавишу \mathbf{M} . Если настройки завершены и Вы не желаете переходить в следующий раздел, а желаете приступить к измерению твёрдости — нажмите и удерживайте клавишу \mathbf{M} в течение 3 сек.

6.1.1. Раздел "МАТЕ" – МАТЕРИАЛ.

Выбор типа измеряемого материала очень важен для вычисления значений твёрдости. Иными словами, тип измеряемого материала должен быть установлен правильно, если Вы хотите получить верные результаты значений по другим шкалам твёрдости, за исключением шкалы HLD.

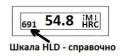
В разделе МАТЕ нажимайте клавишу С для выбора материала, который собираетесь контролировать.

После выбора нужного параметра для продолжения настройки твердомера и перемещения в следующий раздел меню кратковременно нажмите клавишу М. Если настройки завершены и Вы не желаете переходить в следующий раздел, а желаете

No॒	Материал
M1	Сталь и литая сталь
M2	Инструментальная углеродистая сталь
M3	Нержавеющая сталь и жаростойкая сталь
M4	Серый чугун
M5	Чугун с шаровидным графитом
M6	Литейный алюминиевый сплав
M7	Латунь с высоким содержанием цинка
M8	Оловянистая бронза
M9	Медь

приступить к измерению твёрдости — нажмите и удерживайте клавишу \mathbf{M} в течение 3 сек.

6.1.2. Раздел "ШКАЛ" – ШКАЛА ТВЁРДОСТИ.


При измерении твёрдости прибор не использует переводные таблиц для перевода значений из одной шкалы твёрдости в другую. По этой причине перед измерением твёрдости **ОБЯЗАТЕЛЬНО** необходимо произвести калибровку твердомера на мерах твёрдости именно той шкалы твёрдости и того диапазона твёрдости, по которым будет производиться измерение.

Нажимайте клавишу C для выбора шкалы твёрдости, по которой необходимо произвести измерение. Возможные варианты выбора направления: $HLD-HRC-HRB-HB-HV-HS-HRA-\sigma_b$. Пример:

Выбрана шкала HLD

Eсли в настройках твердомера в разделе статистики для вычисления C РЕДНЕГО значения выбран вариант 0 (отказ от вычисления среднего значения), то при измерениях по шкалам твёрдости H LD - H RC - H RB - H B - H V - H S - H RA - σ_b в левом нижнем углу дисплея справочно будет отображаться

значение твёрдости по шкале HLD, переведённое из шкал твёрдости HLD — HRD — HRB — HV — HS — HRA — σ_b .

6.1.3. Раздел "СРЕД" – вычисление СРЕДНЕГО, а также отображение максимального и минимального значений твёрдости из серии проведённых измерений.

Нажимайте клавишу ${\bf C}$ для выбора желаемого количества измерений твёрдости для вычисления среднего значения из серии проведённых измерений. Возможные варианты выбора: 0-3-4-5. Выбор значения 0 означает отказ от вычисления среднего значения.

После выбора нужного параметра для продолжения настройки твердомера и перемещения в следующий раздел меню кратковременно нажмите клавишу \mathbf{M} . Если настройки завершены и Вы не желаете переходить в следующий раздел, а желаете приступить к измерению твёрдости — нажмите и удерживайте клавишу \mathbf{M} в течение 3 сек.

Например, Вы установили цифру 3 для вычисления СРЕДНЕГО значения из серии измерений и вернулись в режим измерения твердомером. В левом нижнем углу дисплея отобразится цифра 0 (пока Вы не произвели ни одного измерения) и через чёрточку цифра 3 (выбранное количество измерений для вычисления СРЕДНЕГО). Проведите 3

измерения твёрдости (цифра 0 будет последовательно изменяться на 1,2,3 по мере проведения измерений твёрдости).

По окончании 3-го измерения кратковременно нажмите клавишу M — на дисплее отобразиться СРЕДНЕЕ значение твёрдости из 3-х произведённых измерений (в левом нижнем углу появиться надпись СРЕ).

Снова кратковременно нажмите клавишу M — на дисплее отобразиться MAKCUMAЛЬHOE значение твёрдости из 3-х произведённых измерений (в левом нижнем углу появятся три горизонтальные черточки).

Снова кратковременно нажмите клавишу M — на дисплее отобразиться MИНИМАЛЬНОЕ значение твёрдости из 3-х произведённых измерений (в левом нижнем углу появится одна горизонтальная чёрточка).

Снова кратковременно нажмите клавишу M – твердомер переключиться в режим измерения для проведения новых замеров твёрдости и вычисления среднего, максимального и минимального значений твёрдости.

Если измерение произведено некорректно и Вы желаете удалить это измерение из вычисления среднего значения в серии проведённых измерений, то нажмите клавишу \mathbf{C} сразу после этого измерения и оно будет удалено из памяти прибора.

6.1.4. Раздел "СОХР" – СОХРАНЕНИЕ.

Нажимайте клавишу **C** для включения или выключения записи результатов измерений твёрдости в ПАМЯТЬ прибора. Если в левом нижнем углу отображается "ЗАП" – значит запись ведётся, если "ВЫ" – значит запись выключена.

После выбора нужного параметра для продолжения настройки твердомера и перемещения в следующий раздел меню кратковременно нажмите клавишу \mathbf{M} . Если настройки завершены и Вы не желаете переходить в следующий раздел, а желаете приступить к измерению твёрдости — нажмите и удерживайте клавишу \mathbf{M} в течение 3 сек.

6.1.5. Раздел "ПАМЯ" – ПАМЯТЬ.

В памяти храниться 99 значений проведённых измерений. Если память будет заполнена, то каждый новый результат будет записываться вместо самого старого результата. Таким образом, в памяти сохраняются только 99 результатов самых последних измерений.

Просмотр данных в памяти.

Нажмите клавишу C для входа в память и на экране отобразиться значение твёрдости самого последнего измерения, а в левом нижнем углу отобразиться порядковый номер этого измерения в памяти прибора.

Для пролистывания списка сохранённых значений вниз кратковременно нажимайте клавишу \mathbf{C} , для пролистывания вверх — клавишу \mathbf{M} . При достижении начала или конца списка на экране отобразится соответствующая запись "НАЧ" или "КОН".

Для выхода из памяти и перемещения в следующий раздел меню нажмите и удерживайте клавишу \mathbf{M} в течение 3 сек — на экране появиться надпись "ВЫХД" Если Вы желаете приступить к измерению твёрдости — снова нажмите и удерживайте клавишу \mathbf{M} в течение 3 сек.

Удаление данных из памяти.

В режиме просмотра данных памяти одновременно нажмите и удерживайте клавиши \mathbf{M} и \mathbf{C} в течение 3 сек. для удаления BCEX сохранённых результатов из памяти прибора.

Внимание! После удаления данных из памяти все сохранённые измеренные значения твёрдости будут удалены без возможности восстановления. Поэтому будьте внимательны при выполнении данной операции.

6.1.6. Раздел "СЕРИ" – серийный номер.

Для просмотра серийного номера твердомера нажмите клавишу \mathbf{C} – в бегущей строке будет отображён серийный номер твердомера.

После просмотра для перемещения в следующий раздел меню кратковременно нажмите клавишу \mathbf{M} . Если настройки завершены и Вы не желаете переходить в следующий раздел, а желаете приступить к измерению твёрдости — нажмите и удерживайте клавишу \mathbf{M} в течение 3 сек.

6.1.7. Раздел "ЗАВН" – заводские настройки.

После длительного (более 60.000 измерений) применения прибора может потребоваться замена старого бойка на новый. Это процедура также требует восстановления заводских настроек.

По умолчанию при входе в этот раздел в левом нижнем углу отображается надпись "НЕ", что означает НЕ восстанавливать заводские настройки.

Если необходимо восстановить заводские настройки, то кратковременно нажмите клавишу $\mathbf{C}-\mathbf{B}$ левом нижнем углу появиться надпись "ВЗН", после чего кратковременно нажмите клавишу $\mathbf{M}-\mathbf{B}$ осстановление заводских настроек будет осуществлено и на экране отобразиться надпись "ОК". Твердомер перейдёт в режим измерения твёрдости.

6.2. ТВМ 1500. Режим ИЗМЕРЕНИЕ ТВЁРДОСТИ – работа с твердомером.

Перед началом измерения твёрдости обеспечьте надлежащие условия для проведения контроля твёрдости согласно п.2.

Откалибруйте твердомер на мере твёрдости того диапазона, в котором будет производится измерение твёрдости контролируемого изделия. Если Вам неизвестен диапазон твёрдости контролируемого изделия, то сперва произведите пробное измерение твёрдости (не менее 5

произведите пробное измерение твёрдости (не менее 5 измерений) изделия и, определив диапазон его твёрдости, откалибруйте твердомер на мере твёрдости этого лиапазона.

6.2.1. **Включение** – нажмите Спусковую кнопку вверху прибора для включения твердомера.

- 6.2.2. Взвод датчика вставьте шомпол в основание ударного датчика чтобы нажать на боёк и сжать внутреннюю пружину до тех пор пока боёк не защёлкнется внутренним механизмом (слышен тихий щелчок захвата).
- 6.2.3. Установка датчика держась за нижний край твердомера (между большим и указательным пальцами) плотно прижмите опорное кольцо твердомера перпендикулярно к измеряемой поверхности.

Не плотно прижатый к измеряемой поверхности твердомер может давать некорректные показания из-за наличия воздушного зазора между поверхностью опорного кольца и контролируемого изделия. Если измеряемая поверхность изогнута – используйте опорные кольца и насадки из дополнительной комплектации твердомера.

6.2.4. Измерение твёрдости – плавно нажмите Спусковую кнопку. Боёк удариться об измеряемую поверхность и измеренное значение твёрдости отобразиться на дисплее. Будьте аккуратны, чтобы в момент нажатия кнопки не произошло дёргание твердомера или измеряемого изделия – любое отклонение от перпендикулярной оси датчика к зоне измерения приводит к некорректному результату измерения.

Настоятельная рекомендация. Никогда не делайте мгновенных заключений по 1, 2 или 3 измерениям твёрдости. Проведите серию из множества измерений. Проанализируйте полученные результаты:

- Разброс измеренных значений твёрдости небольшой (в пределах погрешности твердомера) и стабилен измерения проведены корректно. Пример: полученные результаты измерений стабильны и лежат в пределах шкалы Бринелля в диапазоне от 197 НВ до 206 НВ.
- Разброс измеренных значений твёрдости небольшой (в пределах погрешности твердомера), но малая часть измеренных значений выходит за пределы погрешности твердомера измерения в целом проведены корректно, редкие некорректные измерения (выходящие за пределы погрешности) необходимо удалить из статистики подсчёта среднего значения п. 6.1.4. Пример: основная масса полученных результатов измерений лежит в пределах шкалы Бринелля в диапазоне от 177 НВ до 226 НВ и редкие некорректные измерения со значениями 131 НВ, 259 НВ и т.п.
- Разброс измеренных значений твёрдости может увеличиваться, если увеличивается расстояние между точками замера величина твёрдости зачастую неоднородна по поверхности изделия. Чем выше сосредоточенность точек замера (т.н. "кучность"), тем стабильнее и ниже разброс измеренных значений. Однако очень важно не забывать, что замер в одной и той же точке (попадание ударного бойка в лунку и ближайшую окрестность прошлого попадания) категорически запрещён.

6.3. ТВМ 1500. Раздел КАЛИБРОВКА.

Калибровка позволяет восстановить точность показаний твердомера при возможном износе механических частей датчика (пружина, боёк) в процессе эксплуатации.

Процесс калибровки представляет собой приведение в соответствие (равенство) СРЕДНЕГО значения меры твёрдости (вычислено твердомером согласно п. 6.1.4.) и её номинального значения (выгравировано на мере твёрдости). Калибровка по шкалам твёрдости HRC, HB, HV, HSD и пр. позволяет ввести поправку (коррекцию) к калибровке твердомера по шкале HLD, установленной предприятием-изготовителем.

Для калибровки твердомера выберите меру твёрдости нужной шкалы и диапазона твёрдости (напр. меру твёрдости (65±5) HRC).

6.3.1. Процедура Калибровки.

- Установите количество измерений 3 для вычисления среднего результата (п.6.1.4.).
- Произведите 3 измерения на мере твёрдости.
- Кратковременно нажмите клавишу **М** для отображения СРЕДНЕГО значения из проведённых 3-х измерений (слева внизу появиться надпись СРЕ):
- Нажмите и удерживайте клавишу С в течение 3 сек. чтобы войти в режим Калибровки. Надпись КАЛ кратковременно отобразиться на дисплее, затем на дисплее отобразиться среднее значение твёрдости из 3-х проведённых ранее измерений, а в левом нижнем углу появиться налпись 3НА.
- Нажимайте клавиши М или С для увеличения или уменьшения значения твёрдости на дисплее, чтобы оно совпало с номинальным значением меры твёрдости.
- Нажмите и удерживайте клавишу **M** в течение 3 сек. для завершения Калибровки. Твердомер вернётся в режим измерения.

6.3.2. Проверка Калибровки.

Измерьте твёрдость меры (не менее 5 измерений) и вычислите её СРЕДНЕЕ значение (п. 6.1.4.). Полученное значение на дисплее должно соответствовать значению меры твёрдости в пределах погрешности твердомера (п. 3.). Если полученное значение превышает предел погрешности твердомера, то процедуру КАЛИБРОВКИ следует произвести повторно.

Важно!

- Перед калибровкой рекомендуется установить заводские настройки (п.6.1.8.), после чего установить шкалу твёрдости (п.6.1.3.) соответственно шкале меры твёрдости, на которой производиться калибровка твердомера.
- При измерении твёрдости прибор не использует переводные таблиц для перевода значений из одной шкалы твёрдости в другую. По этой причине перед измерением твёрдости **ОБЯЗАТЕЛЬНО** необходимо произвести калибровку

© 3 секунды

58 IM

твердомера на мерах твёрдости именно той шкалы твёрдости и того диапазона твёрдости, по которым будет производиться измерение.

Помимо стандартизированных мер твёрдости по икалам HRC, HB, HV, HSD для калибровки твердомера разрешено использовать собственные образцы твёрдости предприятия, например для латуни, меди и др. металлов. Перед калибровкой по собственным образцам твёрдости предприятия необходимо установить тип измеряемого материала — n.6.1.2.

TBM 1800.

Питание твердомера.

Для зарядки аккумуляторной батареи подключите твердомер через USB кабель к любому заряжающему устройству: к электрической сети 220B/50Гц через адаптер из базовой комплектации твердомера / напрямую к работающему компьютеру или к прикуривателю в автомобиле. Время полной зарядки 2-3 часа.

Для продления работы аккумулятора твердомер оснащён функцией автоматического выключения. Если не производить измерений или работы с электронным блоком в течение 90 сек, то питание твердомера отключиться.

Включение питания:

Нажмите клавишу ► (в некоторых прежних моделях плавно сдвиньте Взводящую Трубку в направлении электронного блока— твердомер включён).

На дисплее на 1 сек отобразится надпись «Инициализация», а также надпись «Калибровка» в том случае, если ранее была произведена калибровка твердомера п.6.5.

На дисплее отобразятся настройки твердомера, которые были установлены Вами ранее (для нового твердомера – заводские настройки).

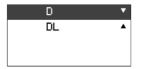
При первом включении и после сброса к заводским настройкам выберите язык – русский. Для этого нажмите и удерживайте (более 1 с) клавишу ▼, затем выберите язык и нажмите клавишу ► для подтверждения выбора.

ВАЖНО! Не начинайте измерять твёрдость изделия пока не проверите точность измерений твердомера на мере твёрдости именно той шкалы твёрдости и того диапазона твёрдости, в пределах которого будет производиться измерение твёрдости контролируемого изделия. При необходимости произведите калибровку твердомера согласно п. 6.5. При выпуске из производства твердомер калибруется на мерах твёрдости Либа (шкала HLD). Для измерения твёрдости в шкалах Роквелл, Супер-Роквелл, Бринелль и Виккерс твердомер необходимо откалибровать на соответствующих мерах твёрдости Роквелл, Супер-Роквелл, Бринелль и Виккерс. Вы можете провести калибровку самостоятельно при наличии мер твёрдости или заказать меры твёрдости как дополнительную комплектацию твердомера.

• Дисплей нового твердомера – заводские настройки:

M1	Сталь и литая сталь
D↓	Тип датчика D, направление измерения – вниз 90°
HLD	Шкала твёрдости Либа (HL) для датчика типа D

После включения твердомера клавишей ▶ для входа в Меню настройки параметров твердомера нажмите клавишу ▼. Для перемещения по Меню параметров твердомера используйте клавиши ▼ или ▲, для входа в разделы Меню используйте



клавишу ▶. Для выхода из Меню настройки параметров твердомера и перехода в режим измерения твёрдости выберите значок выход и нажмите клавишу ▶. Подсказка: длительное (более 1 с) нажатие клавиши ▼ в ЛЮБОМ разделе Меню быстро переводит твердомер из настроек меню в режим измерения твёрдости, а из режима измерения твёрдости — в режим выбора языка Меню.

6.4. ТВМ 1800. Раздел ПАРАМЕТРЫ.

6.4.1. ТИП ДАТЧИКА.

Базово ТВМ-1800 оснащён встроенным бойком типа D. Если используется ударный боёк типа DL из дополнительной комплектации, пожалуйста, выберите этот параметр в настройках.

Датчик типа DL обладает высокой чувствительностью, поэтому работа с ним требует от пользователя специальных навыков в обращении — малейшее отклонение от перпендикулярной оси (датчик DL устанавливается строго под 90° к зоне измерения) приводит к некорректному измерению.

Режим измерения с ударным датчиком типа D		Режим измерения с ударным датчиком типа DL	• • • •		
800	M1 D↓ HLD	CONTRACTOR M1 L↓ LDL			

Ударный боёк типа DL предназначен для контроля твёрдости в труднодоступных местах на узких поверхностях (зубья шестерён) или в технологических углублениях

(отверстия, пазы и шлицы) глубиной до 50 мм и диаметром до 4 мм, недоступных для применения базового бойка типа D.

Для замены необходимо отвернуть опорное кольцо и заменить боёк типа D на боёк типа DL, после чего на место опорного кольца установить металлическую удлинённую насадку (поставляется в комплекте с бойком типа DL), завернув её до упора. В Меню прибора установите тип выбранного датчика DL.

Важно! При замене бойка типа D на боёк типа DL необходимо произвести процедуру калибровки твердомера согласно п.6.8.

6.4.2. МАТЕРИАЛ.

Выбор типа измеряемого материала очень важен для вычисления значений твёрдости. Иными словами, тип измеряемого материала должен быть установлен правильно, если Вы хотите получить верные результаты значений по другим шкалам твёрдости, за исключением шкалы HLD.

No॒	Материал
M1	Сталь и литая сталь
M2	Инструментальная углеродистая сталь
M3	Нержавеющая сталь и жаростойкая сталь
M4	Серый чугун
M5	Чугун с шаровидным графитом
M6	Литейный алюминиевый сплав
M7	Латунь с высоким содержанием цинка
M8	Оловянистая бронза
M9	Медь
M10	Поковки стальные

Из предложенного списка клавишами **▼** или **▲** выберите МАТЕРИАЛ, из которого изготовлено измеряемое изделие и нажмите клавишу **▶** для подтверждения выбора.

6.4.3. ШКАЛА ТВЁРДОСТИ.

Из предложенного списка клавишами ▼ или ▲ выберите ШКАЛУ ТВЁРДОСТИ (напр. шкалу HRC), по которой будет производиться измерение твёрдости изделия и нажмите клавишу ▶ для подтверждения выбора.

HLD	•	HRB	♦	HV	♦
HRC	♦	HB	♦	HS	♦
HRB	♦	HV	♦	HRA	♦
HB	♦	HS	*	σЬ	A

Для перевода уже измеренного и отображённого на экране значения твёрдости из одной шкалы в другую воспользуйтесь вышеописанной процедурой.

Важно! При измерении твёрдости прибор не использует переводные таблиц для перевода значений из одной шкалы твёрдости в другую. По этой причине перед измерением твёрдости **ОБЯЗАТЕЛЬНО** необходимо произвести калибровку твердомера на мерах твёрдости именно той шкалы твёрдости и того диапазона твёрдости, по которым будет производиться измерение.

6.5. ТВМ 1800. Раздел СТАТИСТИКА.

6.5.1. СРЕДНЕЕ ЗНАЧЕНИЕ (AVE).

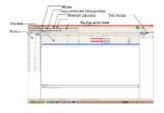
Вы можете самостоятельно выбрать количество измерений, после проведения которых дисплей отобразит СРЕДНЕЕ значение твёрдости из серии проведённых измерений, а также МИНИМАЛЬНОЕ и МАКСИМАЛЬНОЕ значение твёрдости из этой серии измерений.

Выберите СРЕДНЕЕ ЗНАЧЕНИЕ и клавишами ▼ или ▲ выберите желаемое количество измерений для вычисления среднего. Нажмите клавишу ► для подтверждения выбора. Выбор значка крестика "X" означает отключение данной функции.

Например, Вы установили 7 измерений и вернулись в режим измерения твердомером. На экране дисплея отобразится $\overline{\mathbf{x}}$ (математический знак среднего значения), затем цифра 7 (выбранное количество измерений) и цифра 0 (будет последовательно изменяться на 1,2,3,4,5,6,7 по мере

проведения измерений твёрдости). Проведите 7 измерений твёрдости. После этого для просмотра статистики нажимайте клавишу \blacktriangle , сменив тип экрана на любой из 5-ти возможных вариантов, который отвечает вашим задачам — см. п.5.2. Из них 3 варианта выводят на экран статистическую информацию: СРЕДНЕЕ (AVE или знак $\overline{\mathbf{x}}$), МИНИМАЛЬНОЕ (MIN) и МАКСИМАЛЬНОЕ (MAX) значения твёрдости из 7 проведённых измерений.

6.5.2. ПРЕДЕЛЫ.


Вы можете установить нижнюю/верхнюю границы для измерений твёрдости — МИНИМАЛЬНЫЙ ПРЕДЕЛ (МІN)/МАКСИМАЛЬНЫЙ ПРЕДЕЛ (МАХ). Клавишами ▲ и ▼ установите нужное минимальное/максимальное значение твёрдости и нажмите клавишу ► для подтверждения выбора. Выбор значка крестика "Х" означает отключение данной функции, выбор значка галочки "√" — включение данной функции.

Заводскими настройками установлен минимальный предел для значения твёрдости 150 по шкале твёрдости HLD. При установке Вами минимального предела по иной шкале твёрдости (напр. шкале HRC) он будет автоматически пересчитан и для других шкал твёрдости соответственно переводным значениям, встроенным в память твердомера.

6.5.3. Раздел РАСПЕЧАТАТЬ.

Выбор клавишами \blacktriangle и \blacktriangledown значка крестика "Х" означает отключение данной функции, выбор значка галочки " \checkmark " – включение данной функции. Нажмите клавишу \blacktriangleright для подтверждения выбора.

Дополнительная опция. Не входит в базовую комплектацию твердомера и заказывается отдельно.

Данные могут быть загружены в компьютер через подключенный кабель питания USB, для чего на компьютере предварительно должна быть установлена программа обработки, хранения и распечатки массива данных из памяти твердомера. Установочный диск с драйверами прилагается в комплектации.

6.5.4. Раздел ПАМЯТЬ.

Клавишами ▲ и ▼ выберите:

значок крестика "Х" для отключения данной функции.

"Режим 1/2/3" для выбора группы памяти для сохранений значений.

"Просмотр" для просмотра сохранённых данных.

"Удалить" для удаления сохранённых данных.

"Файл" для выбора файла (номер ячейки) с данными.

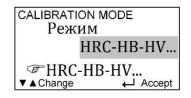
Нажмите клавишу ▶ для подтверждения выбора. Заводскими настройками установлено ПАМЯТЬ ВЫКЛЮЧЕНА. На выбор Вам будут предложены группы ("Режим 1/2/3") для хранения измеренных значений твёрдости, в каждой группе можно сохранить по 999 измеренных значений твёрдости. Клавишами ▲ и ▼ выберите одну из этих групп. Нажмите клавишу ▶ для подтверждения выбора. Когда выбранная группа будет полностью заполнена, то запись измеренных значений твёрдости автоматически будет вестись уже в следующей по порядку группе. Текущие группа и номер измерения будут выведены на экране — см. п.5.4.

6.6. ТВМ 1800. Раздел КАЛИБРОВКА.

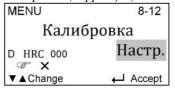
Калибровка позволяет восстановить точность показаний твердомера при возможном износе механических частей датчика (пружина, боёк) в процессе эксплуатации.

Процесс калибровки представляет собой приведение в соответствие (равенство) СРЕДНЕГО значения меры твёрдости (вычислено твердомером согласно п. 6.5.1.) и её НОМИНАЛЬНОГО значения (выгравировано на мере твёрдости). Калибровка по шкалам твёрдости HRC, HB, HV, HSD и пр. позволяет ввести поправку (коррекцию) к калибровке твердомера по шкале HLD, установленной предприятием-изготовителем.

6.6.1. Клавишами ▼ или ▲ выберите шкалу твёрдости (напр. шкалу HRC), по которой будет производиться контроль твёрдости и нажмите клавишу ▶ для подтверждения выбора (п.6.4.3.). Подготовьте эталонную



- меру твёрдости выбранной шкалы (в нашем примере любую меру твёрдости из диапазона HRC).
- 6.6.2. Клавишами ▼ или ▲ выберите СРЕДНЕЕ ЗНАЧЕНИЕ (AVE) и установите количество измерений для вычисления среднего значения не ниже 5 (п.6.5.1.). Нажмите клавишу ▶ для подтверждения выбора. Проведите серию из 5 измерений на эталонной мере твёрдости и сравните полученное твердомером среднее значение (x) с номинальным значением меры твёрдости:
 - Если \overline{x} находится в пределах допустимой погрешности твердомера (п.3.), то калибровка твердомера не требуется (например на мере твёрдости с номинальным значением 47,3HRC твердомер показал $\overline{x} = 45,5HRC$, что укладывается в допустимый диапазон погрешности ± 2 HRC) продолжайте контроль твёрдости далее без калибровки твердомера.
 - Если \overline{x} находится за пределами допустимой погрешности твердомера (п.3.), то калибровка твердомера необходима (например на мере твёрдости с номинальным значением 47,3HRC твердомер показал \overline{x} =41,2HRC, что выходит за пределы допустимого диапазона погрешности ±2 HRC) зайдите в Меню и войдите в режим КАЛИБРОВКА нажатием клавиши \blacktriangleright .
- 6.6.3. Клавишами ▲ и ▼ выберите значок крестика "Х" для отключения поправки (коррекции) к калибровке твердомера (если ранее она была введена в режиме КАЛИБРОВКА). Нажмите клавишу ▶ для подтверждения выбора.
- 6.6.4. Клавишами ▲ и ▼ выберите "Режим". Нажмите клавишу ► для подтверждения выбора. Клавишами ▲ и ▼ выберите:
 - "HL шкала". Нажмите клавишу ▶ для подтверждения выбора. Выбор данного режима рекомендуется только в тех случаях,


когда калибровка твердомера производится по международным стандартам (ASTM A956; DIN 50156 и др.) с использованием мер твёрдости Либа HLD. В этом случае калибровка твердомера происходит только по шкале твёрдости HL с автоматическим введением общей поправки (коррекции) к другим шкалам твёрдости HRC, HB, HV, HSD и пр. Например, в данном режиме вы откалибровали шкалу HL, введя для неё поправку (коррекцию), что привело к автоматической поправке (коррекции) всех других шкал твёрдости в твердомере: HRC-HB-HV-HSD-HRA-HRB.

"HRC-HB-HV...". Нажмите клавишу ▶ для подтверждения выбора. Выбор данного режима рекомендуется для России и других стран постсоветского пространства, когда калибровка твердомера производится использованием мер твёрдости HRC-HB-HV-HSD-HRA-HRB. изготовленных

ГОСТ 9031-75; 8.426-81. В этом случае калибровка твердомера происходит индивидуально по выбранной шкале твёрдости с введением поправки (коррекции) для каждой шкал HRC-HB-HV-HSD-HRA-HRB ИЗ отдельности. Например, в данном режиме вы откалибровали только шкалу HRC, введя для неё поправку (коррекцию), в то время как остальные шкалы твёрдости HB-HV-HSD-HRA-HRB остались без поправки (коррекции).

Клавишами ▲ и ▼ выберите "Настр." для 6.6.5. настройки и введения поправки (коррекции) к выбранной вами ранее в п. 6.4.3. шкале Нажмите клавишу твёрдости. подтверждения выбора. Теперь введите поправку (коррекцию): клавишей увеличивайте (+), а клавишей ▼ уменьшайте (-) изначальное нулевое значение требуемую величину поправки (коррекции). Совет: отдельные длительные (более 1с) нажатия клавиш ▲ и ▼ позволяют ускорить процесс введения поправки (коррекции). В нашем примере (п.б.8.2.) на мере твёрдости номинальным значением 47.3HRC =41,2HRC, твердомер показал X твердомер занижает показания эталонной меры твёрдости (аналогия: как отстают от эталонного времени на 6,1 мин). Нам нужно ввести положительную поправку (коррекцию) в 6,1HRC (аналогия: прибавить-подвести время вперёд на часах на 6,1 мин). При помощи клавиши 🛦 увеличиваем (+) значение поправки (коррекции) от нулевого значения (00.0) до значения (06.1). Нажмите клавишу ▶ для завершения.

6.6.6. Нажмите клавишу > повторно когда на экране значок галочки "√" и процесс калибровки завершён. Для быстрого выхода в режим измерения твёрдости нажмите длительно (более 1с) клавишу ▼. На дисплее появится значок (±) Калибровка произведена.

6.6.7. Проведите контрольную серию из 5 измерений на эталонной мере твёрдости и сравните полученное откалиброванным твердомером среднее значение (\overline{x}) с номинальным значением меры твёрдости. Полученное среднее значение (\overline{x}) должно соответствовать номинальному значению меры твёрдости в пределах погрешности твердомера (п. 3.): например на мере твёрдости с номинальным значением 47,3HRC твердомер показал \overline{x} =45,5HRC, что укладывается в допустимый диапазон погрешности ±2 HRC. Если полученное среднее значение (\overline{x}) превышает предел погрешности твердомера, то процедуру КАЛИБРОВКИ следует произвести повторно.

Важно!

- Перед калибровкой рекомендуется установить заводские настройки п.6.9.3. Если вы этого не делаете, то обязательно убедитесь, что в настройках меню "Материал" установлен параметр **М1 Сталь и литая сталь** п.6.4.2.
- Если ранее вы уже проводили калибровку твердомера, то при проведении повторной калибровки без сброса к заводским настройкам новую поправку (коррекцию) необходимо добавить/убавить к/от прежней калибровки. В нашем примере к прежней калибровке 6.1HRC необходимо добави

- калибровке 6,1HRC необходимо добавить/убавить новое значение необходимой поправки (коррекции).
- При измерении твёрдости прибор не использует переводные таблицы для перевода значений из одной шкалы твёрдости в другую. По этой причине перед измерением твёрдости **ОБЯЗАТЕЛЬНО** необходимо произвести калибровку твердомера на мерах твёрдости именно той шкалы твёрдости и того диапазона твёрдости, по которым будет производиться измерение.
- Калибровка для датчика типа D и датчика типа DL производиться **РАЗДЕЛЬНО**. Перед калибровкой выберите тип установленного датчика (D или DL) согласно п.6.4.1.
- При калибровке твердомера на стандартизированных мерах твёрдости всегда должен быть установлен параметр **M1 Сталь и литая сталь**.

Помимо стандартизированных мер твёрдости по шкалам HRC, HB, HV, HSD для калибровки твердомера разрешено использовать собственные образцы твёрдости предприятия, например для латуни, меди и др. металлов. Перед калибровкой по собственным образцам твёрдости предприятия необходимо установить тип измеряемого материала — n.6.1.2.

6.7. ТВМ 1800. Раздел УСТАНОВКА НАСТРОЕК.

6.7.1. ЗВУК.

Клавишами \blacktriangle и \blacktriangledown выберите значок крестика "X" для отключения звука или значок галочки " \checkmark " для включения звукового сигнала в процессе измерений. Однократный сигнал оповещает об окончании каждого измерения, двукратный сигнал оповещает о завершении последнего измерения из установленного количества измерений для вычисления среднего значения (\overline{x}) п.6.2.1. и выходе за установленные пределы значений МІN и MAX п.6.2.2. Нажмите клавишу \blacktriangleright для подтверждения выбора.

6.7.2. НАСТРОЙКИ.

Клавишами ▲ и ▼ выберите

- "Персон настр" для установки персональных настроек твердомера: тип датчика, тип материала, выборка для вычисления среднего значения (x), пределы значений МІN и МАХ.

Заводские настройки	 I
ТИП ДАТЧИКА	D
МАТЕРИАЛ	M1
ШКАЛА ТВЁРДОСТИ	HLD
НАПРАВЛЕНИЕ ДАТЧИКА	Вниз 90°
КОЛИЧЕСТВО ИЗМЕРЕНЕИЙ	0
МАКСИМАЛЬНЫЙ ПРЕДЕЛ	999 HLD
МИНИМАЛЬНЫЙ ПРЕДЕЛ	150 HLD
ПАМЯТЬ	Выкл.
ПЕЧАТАТЬ	Выкл.

- "Coxp персон" для сохранения персональных настроек твердомера.
- "Заводс настр" для сброса всех персональных настроек и возвращения к заводским настройкам твердомера рекомендуется при проведении калибровки п.6.5.

6.7.3. № измерения.

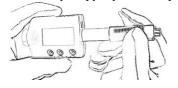
Функция счётчика для контроля количества измерений твёрдости, которые произвёл твердомер – необходимо для обслуживания твердомера согласно п.8. Клавишами ▲ и ▼ выберите

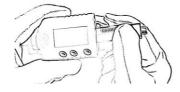
- "Удалить" для удаления всех данных и сброса счётчика в нулевое положение.

6.7.4. О приборе.

Клавишами ▲ и ▼ выберите для просмотра:

- Серийный номер твердомера (SN)
- Дата изготовления твердомера
- Версия программного обеспечения (VER)


6.8. ТВМ 1800. Режим измерения твёрдости.


Перед началом измерения твёрдости обеспечьте надлежащие условия для проведения контроля твёрдости – п.2.

Откалибруйте твердомер на мере твёрдости того диапазона, в котором будет производится измерение твёрдости контролируемого изделия. Если Вам неизвестен диапазон твёрдости контролируемого изделия, то сперва произведите пробное измерение твёрдости (не менее 5 измерений) изделия и, определив диапазон его твёрдости, откалибруйте твердомер на мере твёрдости этого диапазона.

6.8.1. Взвод датчика.

Нажмите Взводящую трубку, сместив её вдоль Направляющей трубки до упора. Боёк будет захвачен внутренним механизмом (слышен щелчок). Отпустите Взводящую трубку и она вернётся в исходное положение.

6.8.2. Установка датчика.

Держась за нижний край твердомера (между большим и указательным пальцами) плотно прижмите опорное кольцо твердомера перпендикулярно к измеряемой поверхности.

Не плотно прижатый к измеряемой поверхности твердомер может давать некорректные показания из-за наличия воздушного зазора между поверхностью опорного кольца и контролируемого изделия. Если измеряемая поверхность изогнута — используйте опорные кольца и насадки из дополнительной комплектации твердомера.

6.8.3. Измерение твёрдости.

Плавно нажмите Спусковую кнопку. Боёк удариться об измеряемую поверхность и измеренное значение твёрдости отобразиться на дисплее. Будьте аккуратны, чтобы в момент нажатия кнопки не произошло дёргание твердомера или измеряемого изделия — любое отклонение от перпендикулярной оси датчика к зоне измерения приводит к некорректному результату измерения.

Настоятельная рекомендация. Никогда не делайте мгновенных заключений по 1-у, 2-м или 3-м измерениям твёрдости. Проведите серию из множества измерений. Проанализируйте полученные результаты:

- Разброс измеренных значений твёрдости небольшой (в пределах погрешности твердомера) и стабилен измерения проведены корректно. Пример: полученные результаты измерений стабильны и лежат в пределах шкалы Бринелля в диапазоне от 197 НВ до 206 НВ.
- Разброс измеренных значений твёрдости небольшой (в пределах погрешности твердомера), но малая часть измеренных значений выходит за

- пределы погрешности твердомера измерения в целом проведены корректно, редкие некорректные измерения (выходящие за пределы погрешности) необходимо удалить из статистики подсчёта среднего значения п. 6.2.1. Пример: основная масса полученных результатов измерений лежит в пределах шкалы Бринелля в диапазоне от 197 НВ до 206 НВ и редкие некорректные измерения со значениями 171 НВ, 219 НВ и т.п.
- Разброс измеренных значений твёрдости может увеличиваться, если увеличивается расстояние между точками замера величина твёрдости зачастую неоднородна по поверхности изделия. Чем выше сосредоточенность точек замера (т.н. "кучность"), тем стабильнее и ниже разброс измеренных значений. Однако очень важно не забывать, что замер в одной и той же точке (попадание ударного бойка в лунку и ближайшую окрестность прошлого попадания) категорически запрещён.

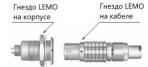
ТВМ-УД

Питание твердомера.

Питание твердомера осуществляется от элементов питания тип AA: батареек или аккумуляторов. Для зарядки аккумуляторной батареи используйте зарядное устройство из комплектации, либо иное изделие с аналогичными характеристиками. Для продления работы аккумулятора твердомер оснащён функцией автоматического выключения. Если не производить измерений или работы с электронным блоком в течении 3 мин, то питание твердомера автоматически отключиться.

ВАЖНО! Не начинайте измерять твёрдость изделия пока не проверите точность измерений твердомера на мере твёрдости <u>именно той шкалы твёрдости и того диапазона твёрдости</u>, в пределах которого будет производиться измерение твёрдости контролируемого изделия. При необходимости произведите калибровку твердомера.

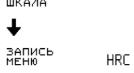
Для измерения твёрдости в шкалах Роквелл, Бринелль и Виккерс твердомер необходимо откалибровать на соответствующих мерах твёрдости Роквелл, Бринелль и Виккерс. Вы можете провести калибровку самостоятельно при наличии мер твёрдости или заказать меры твёрдости как дополнительную комплектацию твердомера.


6.9. ТВМ-УД. Начало работы.

Подключать датчики к электронному блоку и менять их в процессе работы необходимо только при выключенном приборе.

Подсоединить выбранный датчик (ультразвуковой или динамический) к разъёму на верхней торцевой стенке электронного блока.

Гнездо LEMO Гнездо LEMO


В приборе используются разъемы типа LEMO, которые состоят из двух частей: гнездо на корпусе прибора и штекер на кабеле. Разъём на кабеле вставить в разъем на корпусе прибора без усилия, до совпадения его

ключа с пазом в разъёме на корпусе (точка красного цвета, нанесенная на корпус) и, не прилагая лишних усилий, вставить до упора.

Внимание! При отсоединении разъема ни в коем случае нельзя тянуть за кабель, а только за рифленую область разъема на кабеле.

Включить твердомер путём кратковременного нажатия красной клавиши питания «ВКЛ/ВЫКЛ». Экран примет вид, аналогичный представленному.

После включения прибор перейдет в измерительный режим (основной).

В случае, если напряжение питания окажется ниже рабочего, то на индикаторе появится надпись «БАТАРЕЯ РАЗРЯЖЕНА». Выключить прибор, произвести замену или зарядку элементов питания, включить прибор.

Для выбора шкалы твёрдости, по которой будет проводиться измерение, клавишами "Стрелка вверх" и "Стрелка вниз" установить курсор на надпись "ШКАЛА", нажать клавишу "Ввод". Вид экрана представлен на Рисунке.

Выбрать клавишами "Стрелка вверх" и "Стрелка вниз" нужную шкалу, для подтверждения выбора нажать клавишу "Ввод", прибор перейдёт в измерительный режим.

6.10. ТВМ-УД. Работа с датчиком ультразвуковым тип У.

Осторожно установить датчик на испытуемую поверхность, не допуская удара о деталь. Обхватить датчик одной или двумя руками и нажать на торец корпуса датчика в направлении контролируемой поверхности. Не прилагать при этом боковых усилий, т.е. исключить возможность бокового скольжения и царапания поверхности!

После прижатия датчика прозвучит одиночный сигнал, а на индикаторе появится сообщение " ПОДНЯТЬ ДАТЧИК ".

Поднять датчик так, чтобы наконечник индентора не касался изделия. После подъёма датчика прозвучит двойной короткий сигнал, сообщающий об окончании измерения, а на индикаторе появится номер измерения в данной серии (в верхнем правом углу) N=1, а в центре экрана текущее измеренное значение маленькими

65.0 ЗАПИСЬ

Если результат измерения будет находиться вне пределов диапазонов измерений, вместо цифр в центре экрана может появиться сообщение "ИЗМЕРЕНИЕ НЕВОЗМОЖНО. Это измерение не будет учтено прибором при дальнейшем расчёте среднего значения твёрдости.

ИЗМЕРЕНИЕ НЕВОЗМОЖНО ЗАПИСЬ HRC

HRC

6.11. ТВМ-УД. Работа с датчиком динамическим тип Д.

Для удобства работы с динамическим датчиком рекомендуется вставить электронный блок в кожаный чехол, предварительно закрепив шомпол в нижней части чехла. Для этого необходимо расстегнуть чехол, затем вставить шомпол тонкой частью в отверстие с внутренней стороны клапана чехла, вставить прибор и застегнуть чехол.

Далее необходимо указать пространственное положение датчика в момент измерения, т.к. гравитация влияет на движение бойка в динамическом датчике и для точности измерений необходимо ввести автоматическую коррекцию измеряемых прибором показаний. Клавишами "Стрелка вверх" и "Стрелка вниз" подвести курсор к значку "Стрелка" в левой части экрана, её положение будет соответствовать положению датчика, нажать клавишу "Ввод". На экране появится надпись:

ДАТЧИКА" "ПОЛОЖЕНИЕ и стрелка, указывающая направление "выстрела" датчика. Клавишами "Стрелка вверх" и "Стрелка вниз" установить необходимое положение датчика и нажать клавишу "Ввод", прибор перейдёт в измерительный режим.

Взвод датчика – вставьте шомпол в основание ударного датчика чтобы нажать на боёк и сжать внутреннюю пружину до тех пор, пока боёк не защёлкнется внутренним цанговым механизмом (слышен тихий щелчок захвата).

Установка датчика – держась за нижний край датчика (между большим и указательным пальцами) плотно прижмите его перпендикулярно к измеряемой поверхности. Не плотно прижатый к измеряемой поверхности датчик может давать некорректные показания из-за наличия воздушного зазора между опорной поверхностью датчика и контролируемого изделия. Плавно нажмите Спусковую кнопку. Боёк удариться об измеряемую поверхность и измеренное значение твёрдости отобразиться на дисплее. Будьте аккуратны, чтобы в момент нажатия кнопки не произошло дёргание датчика или измеряемого изделия – любое

цифрами.

отклонение от перпендикулярной оси датчика к зоне измерения приводит к некорректному результату измерения.

Взвод датчика при помощи шомпола

После "выстрела" на индикаторе прибора появится номер измерения в данной серии (в верхнем правом углу) N=1, а в центре экрана текущее измеренное значение маленькими цифрами.

Если результат измерения будет находиться вне пределов диапазонов измерений, вместо цифр в центре экрана может появиться сообщение "ИЗМЕРЕНИЕ НЕВОЗМОЖНО". Это измерение не будет учтено прибором.

измерение невозможно

Начиная с четвертого "выстрела" в центре экрана может быть отображено крупными цифрами статистически обработанное значение твердости в случае, если разброс измерений S, учтённых прибором, будет меньше 4,0 % (см. п. 5.3.3). Это измерение не будет учтено прибором при дальнейшем расчёте среднего значения твёрдости.

HRC

6.12. ТВМ-УД. Работа с данными измерений.

использовании любого из датчиков (ультразвукового динамического - здесь и далее по тексту инструкции применимы к любому из датчиков) количество производимых измерений твёрдости можно увеличить вплоть до 30 измерений в каждой серии. Благодаря этому повышается качество вычисления среднего значения твёрдости контролируемого изделия.

Перед началом новой серии измерений необходимо сделать "сброс".

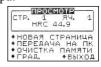
Для этого клавишами "Стрелка вверх" и "Стрелка вниз" в основном режиме установить курсор на надпись "СБРОС" в левом верхнем углу экрана и нажать клавишу "Ввод". При этом серия будет прервана, обнулится счетчик измерений N=0, а также очистятся поля результатов измерений и разброса измерений S. Далее провести измерения согласно п.п. 5.3.1-5.3.4.

Для удобства работы пользователя в верхнем правом углу индикатора будет отображаться оценка разброса измерений, учтенных прибором в текущей серии, S (выражено в процентах). Если разброс учтённых измерений в серии будет более 4,0 %, но статистически обработанное среднее арифметическое значение твёрдости \overline{X} = будет отображаться в верхнем правом углу экрана. Если разброс измерений S превышает 10%, то обработанный результат не будет отображаться на индикаторе.

6.13. ТВМ-УД. Работа с памятью прибора.

Прибор позволяет записать в память, сохранять при выключении питания и затем просмотреть до 2000 результатов измерения с разбивкой на 1-200 "страниц" и возможностью передачи в ПК.

Запись результатов в память осуществляется в основном режиме измерений. Последовательность действий при записи результатов в память:


- провести серию измерений до появления результатов в центре индикатора крупными цифрами;
- клавишами "Стрелка вверх" и "Стрелка вниз" установить курсор на строку ЗАПИСЬ в левой части экрана и нажать клавишу "Ввод". После этого на индикаторе появится номер (адрес) ячейки и текущей "страницы" памяти, в которую записан результат.

Для того чтобы вернуться в основной измерительный режим нужно нажать клавишу "Ввод".

Режим просмотра результатов, записанных в память прибора.

В основном режиме клавишами "Стрелка вверх" и "Стрелка вниз" установить курсор на надпись "МЕНЮ" и нажать клавишу "Ввод". На экране появится меню, включающее в себя работу с памятью, передачу данных на РС и градуировку.

Для просмотра данных клавишами "Стрелка вверх" и "Стрелка вниз" установить курсор на надпись "ПРОСМОТР" и нажать "Ввод". При этом курсор перейдет на номер отображаемой страницы (СТР. ххх), клавишами "Стрелка вверх" и "Стрелка вниз" выбрать страницу, нажать ввод. Курсор перейдет на номер просматриваемой ячейки (ЯЧ. ууу), клавишами "Стрелка вверх" и "Стрелка вниз" выбрать номер ячейки. В строке под надписями СТР. и ЯЧ. будет отображаться значение твердости, записанной в соответствующие страницу и ячейку.

В случае, если в памяти не окажется ни одной записи, то экран будет выглядеть следующим образом:

Открытие новой страницы в памяти прибора.

В основном режиме клавишами "Стрелка вверх" и "Стрелка вниз" установить курсор на надпись "МЕНЮ" и нажать клавишу "Ввод". На экране появится меню, включающее в себя работу с памятью, передачу данных на РС и градуировку.

Клавишами "Стрелка вверх" и "Стрелка вниз" установить курсор на надпись: "НОВАЯ СТРАНИЦА" и нажать клавишу "Ввод". На индикаторе появится надпись "СТРАНИЦА" и номер новой странице.

Примечание. Новую страницу можно открыть только в том случае, если в предыдущую страницу был записан хотя бы один результат измерений.

Нажать клавишу "Ввод" и прибор перейдет в измерительный режим.

Очистка памяти.

В случае необходимости очистки памяти прибора необходимо:

В основном режиме клавишами "Стрелка вверх" и "Стрелка вниз" установить курсор на надпись "МЕНЮ" и нажать клавишу "Ввод". На экране появится меню, включающее в себя работу с памятью, передачу данных на РС и градуировку.

Клавишами "Стрелка вверх" и "Стрелка вниз" установить курсор на надпись: "ОЧИСТКА ПАМЯТИ" и нажать "Ввод". На индикаторе прибора будет выдано сообщение.

Клавишами "Стрелка вверх" и "Стрелка вниз" установить курсор на надпись "ДА" и нажать клавишу "Ввод". Через 3-4 секунды на индикаторе прибора будет выдано сообщение и прибор перейдет в измерительный режим.

Режим передачи данных на ПК.

Для подготовки передачи результатов измерений на ПК, необходимо переписать на жёсткий диск ПК файл TVM_UD.exe и драйвер виртуального СОМ порта CP210x_DRIVER.exe, входящие в состав поставляемого программного обеспечения — размещён на странице прибора ТВМ-УД сайта www.vostok-7.ru

Для передачи данных:

• сначала установить драйвер виртуального СОМ порта. Для этого запустить файл CP210x_DRIVER.exe;

После завершения работы мастера установки драйвера откройте диспетчер устройств

Пуск -> Панель управления -> система -> оборудование -> диспетчер устройств (для Win XP)

В ветке Порты должен появиться СОМ порт с автоматически назначенным номером

- присоединить кабель с переходником, входящий в комплект, к разъему USB ПК и электронному блоку прибора;
 - запустить программу TVM UD.exe с жесткого диска;
- в окне запущенной программы на ПК выбрать тот номер СОМ порта, который был автоматически назначен Windows. Нажать клавишу "Ок", появится окно "Ожидание приема данных".

В основном режиме клавишами "Стрелка вверх" и "Стрелка вниз" установить курсор на надпись "МЕНЮ" и нажать клавишу "Ввод". На экране появится меню, включающее в себя работу с памятью, передачу данных на ПК и градуировку.

Клавишами "Стрелка вверх" и "Стрелка вниз" установить курсор на надпись: "ПЕРЕДАЧА НА ПК" и нажать клавишу "Ввод". На индикаторе появится надпись: "ПЕРЕДАЧА НА ПК".

В окне программы на мониторе ПК появиться сообщение "Прием данных";

• после окончания приёма данных, программа предложит сохранить их на жесткий диск в формате "rtf" под любым именем. После сохранения данных программа откроет файл результатов для дальнейшего редактирования. Сама же программа приема данных будет закрыта. После окончание передачи данных прибор перейдет в измерительный режим.

7. ОБСЛУЖИВАНИЕ И ХРАНЕНИЕ.

Чтобы не допустить поломки прибора с ним следует обращаться осторожно, беречь от пыли, падения, загрязнения маслом и воздействия сильных магнитных полей

7.1.1. Обслуживание ударного механизма датчика динамического.

После проведения 1000...2000 измерений, пожалуйста, очистите направляющую трубку и ударный боёк с помощью щётки, входящей в базовую комплектацию твердомера:

- Отверните опорное кольцо и извлеките ударный боёк.
- Вверните щётку внутрь Направляющей Трубки по часовой стрелке до упора (аккуратно, чтобы не повредить механизм, захватывающий боёк)
- Извлеките щётку наружу тем же вращательным движением.
- Повторите эту операцию не менее 5 раз, удалив скопившуюся грязь и металлическую пыль.
- Установите на место ударный боёк и плотно закрутите опорное кольцо.
- Применение любых смазочных материалов ЗАПРЕЩЕНО!

Датчик ультразвуковой не требует специального обслуживания.

- 7.1.2. Обслуживание электронного блока.
- 7.1.3. КОРПУС. Для очистки корпуса от загрязнений используйте мягкую ткань. Не используйте растворители могут быть повреждены указатели и надписи.
- 7.1.4. АККУМУЛЯТОРНАЯ БАТАРЕЯ.

- Индикатор разряда батареи начинает мигать когда осталось лишь 10% от полного заряда, тем не менее ещё некоторое время можно продолжать измерения.
- **ТВМ 1500, ТВМ-У**Д. При необходимости аккумуляторная батарея и блок питания могут быть заменены на аналогичные согласно их техническим характеристикам (п.3.).
- **TBM 1800**. Твердомер должен быть выключен при подключении к компьютеру через кабель USB. После подключения к работающему компьютеру через кабель USB для проверки состояния зарядки аккумулятора можно включить твердомер процесс и уровень зарядки отобразятся на дисплее.

7.2. Хранение.

Датчик динамический твердомера должен храниться в разряженном состоянии – нажмите Спусковую кнопку чтобы освободить пружину.

После длительного хранения (более 3 месяцев) рекомендуется сначала произвести проверку работы твердомера на мерах твёрдости и лишь затем приступать к измерению твёрдости изделий.

При длительном хранении твердомера рекомендуется производить зарядку аккумуляторной батареи не менее 1-го раза в 6 месяцев.

8. УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ И НЕКОРРЕКТНЫХ ИЗМЕРЕНИЙ.

Проблема	Причина	Способ устранения
Дисплей не	Питающая батарея разряжена /	Произвести зарядку или
включается	неправильно установлена	замену / переустановить,
		соблюдая полярность
Показания на	Нет контакта в разъеме соединения	Проверить надёжность
дисплее не	датчика с электронным блоком /	соединения / Обратиться
меняются	Обрыв провода в соединительном	в сервисную службу
	кабеле или разъёме; неисправность	
Результаты	датчика или электронного блока Износ пружины датчика после	Произвести калибровку
измерений	Износ пружины датчика после интенсивной и длительной	твердомера согласно
стабильны, но	эксплуатации	паспорту и методике
отличаются от	эксплуитиции	поверке
номинала меры		поверко
твёрдости		
Большой разброс	Испытуемый материал	Увеличить количество
результатов	неоднороден по структуре или	измерений для
измерений.	порист.	вычисления среднего
		значения
	Зона измерений подготовлена	Отшлифовать согласно
	неудовлетворительно	требованиям тех.
		характеристик
	Зона измерений заполнена	твердомера п.2. Выбрать другую зону
	Зона измерений заполнена отпечатками (наклёпами) от	Выбрать другую зону измерений
	предыдущих измерений	измерении
	Внутренности датчика	Произвести очистку
	динамического загрязнены	согласно п.б.1.
	Повреждён твёрдосплавный шарик	Произвести замену
	ударного бойка в датчике	,
	динамическом (крайне редкий	
	случай)	
Завышенные	Деформация твёрдосплавного	Произвести калибровку
результаты	шарика ударного бойка в датчике	твердомера согласно
измерений	динамическом после частого	паспорту и методике
	многократного измерения изделий	поверке
	высокой твёрдости	Посторов
Заниженные	Загрязнён твёрдосплавный шарик ударного бойка в датчике	Произвести очистку согласно п.6.1.
результаты измерений	ударного бойка в датчике динамическом	согласно п.б.1.
измерении	дипамическом	

9. МЕТОДИКА ПОВЕРКИ МП 113-261-2019.

Утверждена ФГУП «УНИИМ» 17 января 2020г.

Государственная система обеспечения единства измерений. Твердомеры универсальные ТВМ. Методика поверки	МП 113 – 261 – 2019
---	---------------------

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая методика поверки распространяется на твердомеры универсальные ТВМ (далее — твердомеры), производства ООО «Восток-7», г. Москва, предназначенные для измерений твердости металлов и сплавов по шкалам Роквелла, Бринелля и Виккерса.

Настоящая методика поверки устанавливает процедуру первичной и периодической поверок твердомеров.

Интервал между поверками – один год.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящей методике поверке использованы ссылки на следующие документы:

- Приказ Минпромторга РФ № 1815 от 02.07.2015 г. «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке»;
- ГОСТ 8.064-94 ГСИ. Государственная поверочная схема для средств измерений твердости по шкале Роквелла и Супер-Роквелла;
- ГОСТ 8.062-85 ГСИ. Государственный специальный эталон и государственная поверочная схема для средств измерений твердости по шкалам Бринелля;
- ГОСТ 8.063-2012 ГСИ. Государственная поверочная схема для средств измерений твердости металлов и сплавов по шкалам Виккерса.

3 ОПЕРАЦИИ ПОВЕРКИ

3.1 При проведении поверки твердомеров выполняют операции согласно таблице

Таблица 1 – Операции поверки

№ п/п	Наименование операции	Номер пункта
1	Проверка внешнего вида и комплектности твердомера	8.1
2	Опробование	8.2
3	Определение диапазона и абсолютной погрешности измерений твердости по шкалам Роквелла, Бринелля, Виккерса	8.3

1.

- 3.2 Если при выполнении той или иной операции выявлено несоответствие установленным требованиям, поверка приостанавливается, выясняются и устраняются причины несоответствия, после этого поверка повторяется с операции, по которой выявлено несоответствие.
- 3.3 В случае повторного выявления несоответствия установленным требованиям поверку прекращают, выдается извещение о непригодности.
- 3.4 На основании письменного заявления владельца СИ, оформленного в произвольной форме, допускается проводить поверку отдельных автономных блоков из состава средства измерений для меньшего числа измеряемых величин или на меньшем числе поддиапазонов измерений твердости.

4 СРЕДСТВА ПОВЕРКИ

- 4.1 При проведении поверки применяют следующие средства поверки:
- эталонные меры твердости по шкалам Роквелла, 2-го разряда по ГОСТ 8.064-94 со значениями (83 ± 3) HRA, (90 ± 10) HRB, (25 ± 5) HRC, (45 ± 5) HRC, (65 ± 5) HRC;
- эталонные меры твердости по шкалам Бринелля, 2-го разряда по ГОСТ 8.062-85 со значениями (100 ± 25) HB (HBW), (200 ± 50) HB (HBW), (400 ± 50) HB (HBW);
- эталонные меры твердости по шкалам Виккерса, 2-го разряда по ГОСТ 8.063-2012 со значениями (450 ± 75) HV, (800 ± 50) HV.
- термогигрометр, диапазоны измерений относительной влажности (10-80) %, температуры (15-30) °C, пределы допускаемой абсолютной погрешности измерений $\Delta=\pm 2,5$ %, $\Delta=\pm 0,7$ °C.
- 4.2 При проведении поверки допускается применение средств поверки, не указанных в п. 4.1, обеспечивающих определение метрологических характеристик твердомеров с требуемой точностью.
- 4.3 Эталоны, применяемые при поверке, должны иметь действующие свидетельства об аттестации, средства измерений свидетельства о поверке.

5 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица из числа специалистов, допущенных к поверке, работающих в организации, аккредитованной на право поверки СИ механических величин, и ознакомившиеся с эксплуатационной документацией на твердомеры и настоящей методикой поверки.

6 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки твердомеров специальных требований безопасности не предъявляется.

7 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха, Ос

от 18 до 25;

- относительная влажность воздуха, %

от 30 до 80.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Проверка внешнего вида и комплектности твердомера

- 8.1.1 Электронный блок, датчики, входящие в комплектность твердомера, не должны иметь следов коррозии и каких-либо механических повреждений.
 - 8.1.2 Комплектность твердомера должна соответствовать паспорту.

8.2 Опробование

- 8.2.1 Включить твердомер согласно 6 паспорта.
- 8.2.2 На мере твердости провести измерения согласно 6 паспорта. На экране электронного блока должно появиться значение твердости меры.

8.3 Определение диапазона и абсолютной погрешности измерений твердости по шкалам Роквелла, Бринелля, Виккерса

- 8.3.1 Для определения диапазона и абсолютной погрешности измерений твердости по шкалам Роквелла
- для модификации ТВМ-УД использовать эталонные меры со значениями (25 \pm 5) HRC, (45 \pm 5) HRC, (65 \pm 5) HRC;
- для модификаций ТВМ 1500, ТВМ 1800 использовать эталонные меры со значениями (83 \pm 3) HRA, (90 \pm 10) HRB, (25 \pm 5) HRC, (45 \pm 5) HRC, (65 \pm 5) HRC.

Для определения диапазона и абсолютной погрешности измерений твердости по шкалам Бринелля для модификации ТВМ-УД, ТВМ 1500, ТВМ 1800 использовать эталонные меры со значениями (100 ± 25) НВ (HBW), (200 ± 50) НВ (HBW), (400 ± 50) НВ (HBW).

Для определения диапазона и абсолютной погрешности измерений твёрдости по шкалам Виккерса для модификации ТВМ-УД, ТВМ 1500, ТВМ 1800 использовать эталонные меры со значениями $(450\pm75)~{\rm HV}, (800\pm50)~{\rm HV}.$

- $8.3.2~{
 m Ha}$ каждую эталонную меру нанести пять отпечатков, располагая их равномерно по всей рабочей поверхности. Рассчитать среднее арифметическое \overline{H}_i на i-ой эталонной мере, ед. тв.
- 8.3.3 Определить абсолютную погрешность измерений твердости Δ_i , ед. тв. по формуле

$$\Delta_i = \overline{H}_i - H_{\pi i},\tag{1}$$

где \bar{H}_i — среднее арифметическое значение твердости, полученное с помощью твердомера, на i-ой эталонной мере, ед. тв.;

 H_{ni} – действительное значение твердости і-ой эталонной меры, ед. тв.

- 8.3.4 Операции 8.3.2-8.3.3 провести для каждого датчика, входящего в комплектность твердомера.
- 8.3.5 Абсолютная погрешность измерений твердости по шкалам Роквелла, Бринелля, Виккерса должна находиться в пределах, указанных в таблице 2.

Диапазон измерений твердости соответствует заявленному значению, если погрешность измерений твердости находится в диапазоне допускаемых значений.

Таблица 2 – Диапазоны измерений и абсолютная погрешность измерений

твердости по шкалам Роквелла, Бринелля, Виккерса

Наименование	Знач	ение
характеристики	ТВМ-УД	TBM 1500 TBM 1800
Диапазон измерений		
твердости по шкалам:		
- Роквелла	_	от 70 до 93 HRA
	_	от 25 до 100 HRB
	от 20 до 70 HRC	от 20 до 70 HRC
- Бринелля	от 80 до 650 HB (HBW)	от 80 до 650 HB (HBW)
- Виккерса	от 80 до 950 HV	от 80 до 950 HV
Пределы допускаемой		
абсолютной погрешности		
измерений твердости по		
шкалам Роквелла в		
поддиапазонах:		
от 70 до 93 HRA	_	±2 HRA
от 25 до 100 HRB	_	±3 HRB
от 20 до 70 HRC	±2 HRC	±2 HRC
Пределы допускаемой		
абсолютной погрешности		
измерений твердости по	±?	12
шкалам Бринелля, НВ		
(HBW)		
Пределы допускаемой		
абсолютной погрешности	±	15
измерений твердости по		
шкалам Виккерса, HV		

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Результаты поверки оформляют протоколом, форма протокола поверки приведена в приложении А к настоящей методике поверке.
- 9.2 Положительные результаты поверки твердомеров оформляют согласно Приказу Минпромторга России № 1815 выдачей свидетельства о поверке.

Знак поверки наносится на свидетельство о поверке.

9.3 Отрицательные результаты поверки твердомеров оформляют согласно Приказу Минпромторга России № 1815 выдачей извещения о непригодности с указанием причин непригодности.

Приложение А (рекомендуемое)

Форма протокола поверки Протокол поверки №

		mon	токол поверки м				
А.1 Наименован							_
А.2 Заводской н	номер						_
А.3 Изготовител	ль ООО «Восто	к-7»,	г. Москва				
А.4 Принадлежі	ит						_
А.5 Метрологич	неские характер	исти	ки:			_	_
А.6 Номер по Го	осреестру						_
А.7 Документ	MΠ 113-261-2	019 4	«ГСИ. Твердомерн	ы универса	льные	TBM.	Методика
поверки»							
A.8	Средства		измерений,	испол	іьзуемы	ie	при
поверке:							_
А.9 Условия пог	верки: темпера	гура	°С, влажн	ость	%		
	-		езультаты поверк				
А.10 Результать	ы проверки внег	шнег	о вида и комплекти	ности тверд	омера		
соответствуют,	не соответству	<u>ют</u> тр	оебованиям 8.1 МП	[. ·			
(ненужное	е зачеркнуть)	-					
		сооть	ветствуют, не соотв	ветствуют т	гребова	ниям 8.	2 MΠ.
·	•		ненужное зачерки		•		
А.12 Определен	ие диапазона и		лютной погрешнос		ий твер	дости і	по шкалам
Роквелла, Бринелля,	Виккерса		•	•	•		
			G			П	оеделы
	Результать		Среднее	Абсолю	тная		ускаемой
Действительное	измерений		арифметическо	погрешн			лютной
значение	твердости (е значение	измере			ешности
твердости і-ой	помощью		твердости \overline{H}_i ,	твердост			лерений иерений
меры $H_{\pi i}$, ед. тв.	твердомера і	H_i ,	на і-ой мере,	ед. т	-		рдости,
меры п _{ді} , ед. тв.	ед. тв.		ед. тв.	СД. 11	ь.		рдости, ед.тв.
	1 2 3 4	. 5					.д. гв.
	1 2 3 4	. 3	<u> </u>				
			дитик				
Вывол: пиапазо	ы и абсолютия	а пог	горого измерен Грешность измерен	шй треппос	ти по п	пкапам	Роквеппа
Бринелля, Виккерса						ıkanawı	i okbellila,
вринелля, виккерса	(ненужно			ованиям о.	J WIII.		
			еркнуть) ие по результатам	. Hononiui			
A 12 Трор помож			<u>соответствует,</u>		отриот п	en o 5 o n o	шал МП
А.13 Твердомер	универсальны	и	<u>соответствует,</u> (ненужное			греоова	ниям ічіті.
A 14 Transparen		×	поверен в	зачеркнуть	·)		
	универсальны	и	поверен в	диапазоне	измере	нии, ук	азанном в
описании типа.							
Организация, пр	роводившая по	верку					
Поверитель							
	(подпись)		(инициалы, ф	рамилия)			
Дата поверки «	»		20	Г.			

СВЕДЕНИЯ О ПОВЕРКЕ ТВЕРДОМЕРА.

Свидетельство о поверке действительно 1 год со дня выписки.

Свидетельс	тво о поверке деиствительно	тод со дня выписки.
ДАТА	№ СВИДЕТЕЛЬСТВА	1 год со дня выписки. ПОВЕРЯЮЩАЯ ОРГАНИЗАЦИЯ
[
}		
[
}	 	
ļ		
}	 	
ļ	ļ	

10. Твердомеры ТВМ 1500, ТВМ 1800 И ТВМ-УД. Гарантия. Предприятие-изготовитель. Идентификационные данные.

- 10.1. Гарантийный срок эксплуатации указан в технических характеристиках, отсчитывается с даты продажи и действует при соблюдении условий эксплуатации и хранения. Гарантия прекращается в случае самостоятельной разборки твердомера (скрытые пломбы будут разрушены).
- 10.2. Производство сертифицировано по правилам «ISO 9001:2011 Системы менеджмента качества. Требования». Изготовитель: ООО «Восток-7»

www.vostok-7.ru

Тел. +7(495) 740-06-12 info@vostok-7.ru

10.3. Идентификационные данные прибора:

Твердомер универсальный ТВМ в базовой комплектации (п.4.)	модификац	ия:		
Серийный номер	$N_{\underline{0}}$			
дополнительная к	ОМПЛЕКТАІ	ция		
(по заказу,	п. 4.)			
Наименование		ТВМ- УД	TBM 1500	TBM 1800
Твердомер универсальный модификаций ТВ	M:			
- ультразвуковой датчик			_	_
- динамический датчик типа D				
- динамический датчик типа DL			_	
- динамический датчик типа DC			_	—
- динамический датчик типа С			_	—
- динамический датчик типа D+15			— — —	—
- динамический датчик типа Е			_	_
- динамический датчик типа G			_	
Комплект опорных колец и насадок:				
- к динамическим датчикам				
- к ультразвуковому датчику			_	—
Штатив для датчика ультразвукового			_	
Шлифовальная машинка для уменьшения ше	роховатости			
Контактная смазка для притирки лёгких и тог	нких изделий			
Меры твёрдости по шкалам HRA, HRB, HRC	, HB, HV			

ДАТА ПРОДАЖИ:
