

BondMaster 600 Контроль качества композитных материалов

Руководство по эксплуатации

DMTA-10045-01RU — Версия С Октябрь 2016

Данное руководство по эксплуатации содержит важную информацию по безопасному и эффективному использованию прибора Olympus. Перед эксплуатацией прибора внимательно изучите данное руководство и используйте прибор только в соответствии с инструкциями.

Храните руководство по эксплуатации в безопасном и доступном месте.

Olympus Scientific Solutions Americas, 48 Woerd Avenue, Waltham, MA 02453, USA

© 2014, 2015, 2016 Olympus. Все права защищены. Ни одна часть данного документа не может быть воспроизведена, переведена или распространена без получения предварительного письменного разрешения Olympus.

Первое издание на английском языке: BondMaster 600 — Composite Bond Tester: User's Manual (DMTA-10045-01EN – Rev. E, August 2016) © 2014, 2015, 2016 by Olympus.

При написании и переводе данного документа особое внимание было уделено обеспечению точности содержащейся в нем информации и соответствию этой информации версии изделия, изготовленного до даты, указанной на титульном листе. Однако, если впоследствии в прибор были внесены модификации, в данном руководстве они не отражены.

Информация в данном руководстве может быть изменена без предварительного уведомления.

Номер изделия: DMTA-10045-01RU Версия С Октябрь 2016

Отпечатано в США

Логотипы SD, miniSD и microSD являются товарными знаками компании SD-3D, LLC.

Названия продуктов являются товарными знаками или зарегистрированными торговыми марками соответствующих компаний.

Содержание

Список сокращений іх
Маркировка 1
Важная информация. Ознакомьтесь перед использованием
оборудования 5
Назначение
Руководство по эксплуатации 5
Совместимость прибора 6
Ремонт и модификации 6
Знаки безопасности 7
Сигнальные слова 7
Сигнальные слова-примечания 8
Безопасность
ПРЕДУПРЕЖДЕНИЯ 9
Меры предосторожности при использовании батарей 10
Защита органов слуха 11
Утилизация оборудования 12
СЕ (Директивы Европейского сообщества) 12
Директива WEEE 12
Директива RoHS (Китай) 13
Корейская комиссия по связи (КСС) 14
Директива об электромагнитной совместимости (ЭМС) 14
Соответствие нормам FCC (США) 14
Соответствие стандарту ICES-001 (Канада) 15
Информация о гарантии 16
Техническая поддержка 17
Введение

1.	Ko	мплеі	кт п	оставки	. 21
	1.1	Расп	аковн		. 21
	1.2	Перв	онач	альный осмотр	. 21
	1.3	Соде	ржи	мое комплекта	. 22
2.	Kr	аткий	ίοδ	30p BondMaster 600	. 25
	2.1	При	ниип	работы и технология контроля	. 25
	2.2	Разъ	емы	F F	. 27
	2.3	Исто	чник	и питания	. 31
		2.3.1	3ap	ядное устройство/адаптер	. 32
		2.3.2	Акк	умуляторный отсек	. 35
		2.3.3	Лит	ий-ионная аккумуляторная батарея	. 37
		2.3.4	Ще	10чные батареи	. 38
	2.4	Устан	новка	і карты памяти microSD	. 39
	2.5	Особ	енно	сти аппаратного обеспечения BondMaster 600	. 40
		2.5.1	Апг	аратное обеспечение	. 41
		2.5	.1.1	Передняя панель и ручка регулятора	. 42
		2.5	.1.2	Клавиатура	. 43
	2.5.2 Разъемы				
		2.5	.2.1	Разъем PROBE (для подключения ПЭП)	. 48
2.5.2.2 Разъемы VGA OUT и I/O (вводы/выводы)				Разъемы VGA OUT и I/O (вводы/выводы)	. 49
		2.5	.2.3	Карта памяти microSD и порт USB	. 51
		2.5.3	Про	чие аппаратные характеристики	. 52
		2.5	.3.1	Подставка BondMaster 600	. 52
	2.5.3.2 Уплотнительные кольца и герметизирующие прокла				
		2.5	.3.3	Защита дисплея	. 53
		2.5.4	Заш	ита от воздействия окружающей среды	. 54
3.	По) <i>л</i> ьзов	ател	ъский интерфейс	. 55
	3.1	Запу	ск Во	ndMaster 600	. 55
		3.1.1	Нав	игация в меню приложений	. 57
		3.1.2	Экр	ан измерений	. 57
	3.2	Выбс	р эл	ементов меню	. 59
	3.3	Отоб	раже	ение всех функций одновременно — Меню ВСЕ НАСТРОЙКИ	60
		3.3.1	Исп	ользование меню ВСЕ НАСТРОЙКИ	. 61
		3.3.2	Спе	циальные функции меню ВСЕ НАСТРОЙКИ	. 62
	3.4	Отоб	браже	ение значений в режиме реального времени	. 62
		3.4.1	Ото	бражение показаний в режиме реального времени	. 64
		3.4.2	Ото	бражение реальных показаний в полноэкранном режиме	
			(кла	виша FULL NEXT)	. 65

4.	Ha	чальн	ные установки	. 67		
	4.1	Язык	к пользовательского интерфейса и десятичный разделитель	67		
	4.2	Наст	гройка часов	68		
	4.3 Настройка экрана					
	4.4 Настройка яркости экрана					
	гройка параметра Автоудаление	70				
	4.6 Выбор начального экрана					
	4.7	Акти	ивация функции «перекрестие»	71		
5.	Φ	ункци	и управления	. 73		
	5.1	Powe	erLink	73		
	5.2	Элем	менты управления BondMaster 600	74		
		5.2.1	Дисплей	74		
		5.2.2	Кнопка питания и кнопка блокировки	75		
		5.2.3	Функциональные кнопки	75		
		5.2.4	Клавиши меню	75		
		5.2.5	Ручка регулятора	76		
		5.2.6	Скрытая функция — Экранный снимок	77		
	5.3	Режи	имы и меню	77		
		5.3.1	Режим РС РЧ — ГЛАВНОЕ меню	77		
		5.3.2	Режим РС РАЗВ. — ГЛАВНОЕ меню	82		
		5.3.3	Режим MIA — Меню MAIN (Главное)	85		
		5.3.4	Режим РЕЗОН — ГЛАВНОЕ Меню	87		
		5.3.5	Режим РС РЧ — Меню DISP/DOTS (Отображение/точки)	88		
		5.3.6	Режим РС РАЗВ. — Меню DISP/DOTS (Отображение/точки)	95		
		5.3.7	Режим MIA — Меню DISP/DOTS (Отображение/точки)	95		
		5.3.8	Режим РЕЗОН (Резонансный) — Меню DISP/DOTS			
			(Отображение/точки)	96		
		5.3.9	Режим РС РЧ – Меню СИГН. (РЧ-отображение)	97		
		5.3.10	Режим РС РЧ – Меню СИГН. (РЧ+ХҮ и ХҮ-отображение)	100		
		5.3.11	Режим РС РЧ – Меню СИГН. (ХҮ-СКАН и ХҮ-отображение)	100		
		5.3.12	Режим РС РАЗВ. — Меню СИГН	100		
		5.3	5.12.1 Изменение параметров ПРЯМ сигнализации в режиме PC			
			РАЗВ	103		
		5.3	5.12.2 Изменение параметров СЕКТОР. сигнализации в режиме Г	РС		
			РАЗВ	104		
		5.3	5.12.3 Изменение параметров КРУГ. сигнализации в режиме PC			
			РАЗВ	105		
		5.3	3.12.4 Изменение СПЕКТР. параметров сигнализации в режиме I	°C		
			РАЗВ	106		
		5.3.13	Режим МІА— Меню Сигнализация	107		

	5.3	3.14 РЕЗОНАНАСНЫЙ Режим — Меню Сигнализация	109
	5.3	3.15 Меню МЕМ (Память)	110
	5.3	3.16 Текстовый редактор памяти	113
	5.3	3.17 Меню Расширенные настройки — Клавиша меню ADV SETUP	116
6.	Прии	менение1	125
	6.1	Наиболее используемые приложения BondMaster 600	126
	6.1	1.1 Выявление отслоений в композиционных материалах (КМ) с сотовым наподнителем, плоской формы — в режиме Р-С РЧ или	
		ИМПУЛЬС	126
	6.1	1.2 Выявление отслоений общивки от сотового заполнителя в объекта	ax
		конусной формы – в Р-С режиме Развертки по частоте	137
	6.1	1.3 Выявление мелких отслоений в КМ с сотовым наполнителем —	
		Режим MIA (Анализ механического импеданса)	141
	6.1	1.4 Выявление отремонтированных участков (заливки) в КМ с сотовых наполнителем — Режим МІА	м 146
	6.1	1.5 Контроль качества клеевых соединений металлических изделий –	-
		Резонансный режим	152
	6.1	1.6 Выявление расслоений в многослойных композиционных	
		материалах — Резонансный режим	159
	6.2	Руководство по процедурам ОЕМ и разработке приложений с	
	1	использованием BondMaster 600	167
	6.2	2.1 Анализ частотных характеристик в КМ с сотовым наполнителем -	_
		Выбор оптимальной частоты контроля с использованием режима	l 4
		Р-С РАЗВ	167
	6.2	2.2 Определение оптимальнои частоты для контроля КМ с сотовым	100
		наполнителем — Режим МІА	173
7.	Прог	граммное обеспечение BondMaster PC 1	181
	7.1	USB-соединение	181
	7.2	Получение экранных снимков с помощью BondMaster PC	181
	7.3	Обновление программного обеспечения	183
	7.4	Создание PDF-документов	186
	7.5	Команды	188
	7.6	Удаленный контроль	209
	7.7	Диспетчер файлов	211
	7.8	Активация дополнительных опций	215
	7.9	Гезервное копирование	216
	7.10	оосстановление данных	218
8.	Техн	ический уход и устранение неисправностей 2	221

8.1 8.2	Литий-ионная аккумуляторная батарея Преобразователь: технический уход и диагностика	221 222		
Прило	жение А: Технические характеристики 2	223		
A.1	Общие характеристики и условия эксплуатации	223		
A.2	Характеристики разъемов ввода/вывода	226		
A.3	Контроль композитных материалов. Технические характеристики 2	228		
A.4	Характеристики Р-С ПЭП в режиме излучения тонального сигнала и			
	качающейся частоты	229		
A.5	Характеристики режима МІА и резонансного режима	230		
A.6	Сигнализации, разъемы для подключения и оперативная память	231		
A.7	Характеристики интерфейса	232		
Приложение В: Комплектующие, запасные части и обновления 235				
Список иллюстраций 23				
Список таблиц 24				

Список сокращений

AC	переменный ток
CD-ROM	компакт-диск для однократной записи данных
DC	постоянный ток
EFUP	период экологически безопасного использования изделия
I/O	вводы/выводы
ID	идентификация
IP	защита от проникновения пыли и влаги
LCD	жидкокристаллический дисплей
LED	световой индикатор
Li-ion	литий-ионный
MIA	анализ механического импеданса
N/A	неприменимо
OEM	производитель оригинального оборудования
P-C	раздельно-совмещенный
SD	карта памяти
SPC	статистическое управление процессом
USB	последовательный интерфейс передачи данных
VAC	напряжение переменного тока
VGA	видеографический адаптер
Арт.	артикул
ГБ	гигабайт
ПК	персональный компьютер

Маркировка

Наклейки и символы безопасности расположены на приборе в местах, указанных на Рис. i-1 на стр. 1 и на Рис. i-2 на стр. 2. Если часть или вся маркировка отсутствует либо неразборчива, обратитесь в региональное представительство компании Olympus.

Рис. і-1 Паспортная табличка на задней панели прибора

Серийный номер (см. Табл. 2 на стр. 4)

Рис. і-2 Расположение серийного номера прибора

Во избежание поражения электрическим током не прикасайтесь к внутренним проводникам 11-штырькового разъема Fischer. На внутреннем контакте может присутствовать напряжение до 80 В. Предупреждающий знак на рисунке ниже указывает на риск поражения электрическим током.

Рис. і-3 Предупреждающий знак

Cuick Start Press Applica and then press Full Screen Press The Start Note: Knob is diss	Basic Operation (is then [application] (B key) tion selector, select with knobPress the lower 5 keys repeatedly to access different menu pages. MEW MEW M					
	Содержит					
Данный символ обозначает местонахождение мембранного вентиляционного отверстия.						
	Обозначение постоянного тока.					
Символ WEEE указывает на недопустимость утилизации оборудования в качестве несортированных бытовых отходов и на необходимость его отдельной обработки.						
	Знак соответствия RCM указывает на соответствие изделия всем действующим стандартам и его регистрацию в Управлении по связи и средствам массовой информации Австралии (ACMA) для размещения на австралийском рынке.					
	Данный прибор совместим с электромагнитным оборудованием для работы в служебных помещениях (класс А) и вне помещения. Код MSIP для прибора BondMaster 600: MSIP-REM-OYN-B600.					

Табл. 1 Паспортная табличка

CE	Маркировка СЕ – извещение о соответствии данного изделия всем директивам Европейского Сообщества. Подробности см. в Заявлении о соответствии. За доподнительной информацией обращайтесь в
	региональное представительство компании Olympus.
	Маркировка China RoHS указывает на экологически безопасную продолжительность использования (EFUP). Период EFUP определяется количеством лет, на протяжении которых гарантируется отсутствие утечки или химического разложения подконтрольных веществ. Период EFUP для BondMaster 600 составляет 15 лет. Примечание : Указанный период экологически безопасного использования (EFUP) не следует рассматривать как период гарантированной функциональности и работоспособности изделия.
$\mathbf{\Lambda}$	Предупреждающий знак отправляет пользователя к руководству по эксплуатации для выявления причины потенциальной опасности и способов ее устранения.

Табл. 1 Паспортная табличка (продолжение)

Табл. 2 Наклейка с серийным номером

Важная информация. Ознакомьтесь перед использованием оборудования.

Назначение

BondMaster 600 предназначен для проведения неразрушающего контроля прочности промышленных и коммерческих композитных материалов.

осторожно

Используйте BondMaster 600 строго по назначению. Оборудование не может использоваться для обследования или осмотра тел людей или животных.

Руководство по эксплуатации

Данное руководство по эксплуатации содержит важную информацию по безопасному и эффективному использованию прибора Olympus. Перед эксплуатацией прибора внимательно изучите данное руководство и используйте прибор только в соответствии с инструкциями.

Храните руководство по эксплуатации в безопасном и доступном месте.

ВАЖНО

Некоторые компоненты и/или снимки экранов в данном руководстве могут незначительно отличаться от вашего прибора, однако на работу это не влияет.

Совместимость прибора

Используйте с BondMaster 600 только перечисленные ниже комплектующие:

- Перезаряжаемая литий-ионная (Li-Ion) аккумуляторная батарея (Olympus Арт.: 600-BAT-L-2 [U8760058])
- Возможно использование внешнего зарядного устройства (Olympus Арт.: EPXT-EC-X), где «Х» обозначает тип кабеля электропитания (см. Табл. 18 на стр. 236).
- Зарядное устройство/адаптер (Olympus Apr.: EP-MCA-X), где «Х» обозначает тип кабеля электропитания (см. Табл. 18 на стр. 236).

ВНИМАНИЕ

Всегда используйте оборудование и комплектующие, соответствующие техническим характеристикам Olympus. Использование несовместимого оборудования может привести к неисправности и/или поломке прибора.

Ремонт и модификации

BondMaster 600 не содержит обслуживаемых пользователем компонентов. Неавторизованное самопроизвольное открытие прибора лишает права на использование гарантии.

Во избежание травм и/или повреждения оборудования не пытайтесь разбирать, модифицировать или самостоятельно ремонтировать прибор.

Знаки безопасности

Следующие знаки безопасности могут фигурировать на приборе и в руководстве по эксплуатации:

\Lambda Общий предупреждающий знак

Этот знак предупреждает пользователя о возможной опасности. Все сообщения о безопасности, следующие за этим знаком, должны быть приняты к сведению во избежание травм и повреждений.

А Знак предупреждения о высоком напряжении

Этот знак предупреждает пользователя о потенциальной опасности поражения током высокого напряжения (свыше 1 000 Вольт). Все сообщения о безопасности, следующие за этим знаком, должны быть приняты к сведению во избежание возможных травм.

Сигнальные слова

Следующие символы безопасности могут фигурировать в сопровождающей прибор документации:

Сигнальное слово ОПАСНО указывает на неминуемо опасную ситуацию. Оно привлекает внимание к процедуре или операции, которая при некорректной реализации или несоблюдении техники безопасности может стать причиной

смерти или серьезных травм. Для продолжения работы вы должны полностью понять смысл и выполнить условия, указанные ниже сигнального слова ОПАСНО.

осторожно

Предупреждающее слово ОСТОРОЖНО указывает на потенциально опасную ситуацию. Оно привлекает внимание к процедуре или операции, которая при некорректной реализации или несоблюдении техники безопасности может стать причиной смерти или серьезных травм. Для продолжения работы вы должны полностью понять смысл и выполнить условия, указанные ниже сигнального слова ОСТОРОЖНО.

ВНИМАНИЕ

Предупреждающее слово ВНИМАНИЕ указывает на потенциально опасную ситуацию. Оно привлекает внимание к процедуре или операции, которая при некорректной реализации или несоблюдении техники безопасности может стать причиной получения травм легкой или умеренной степени тяжести, повреждения оборудования, разрушения части или всего прибора, а так же потери данных. Для продолжения работы вы должны полностью понять смысл и выполнить условия, указанные ниже сигнального слова ВНИМАНИЕ.

Сигнальные слова-примечания

Следующие символы безопасности могут фигурировать в сопровождающей прибор документации:

ВАЖНО

Сигнальное слово ВАЖНО привлекает внимание к важной информации или данным, необходимым для реализации задачи.

ПРИМЕЧАНИЕ

Сигнальное слово ПРИМЕЧАНИЕ привлекает внимание к процедуре или операции, требующей особого внимания. Примечание также содержит общую полезную, но не обязательную для исполнения информацию.

COBET

Сигнальное слово СОВЕТ привлекает внимание к примечаниям, призванным помочь в выполнении описанных в инструкции процедур, а так же содержащим полезную информацию по эффективному использованию возможностей прибора.

Безопасность

Перед включением прибора убедитесь в том, что были приняты все необходимые меры безопасности (см. предупреждения ниже). Кроме того, обратите внимание на внешнюю маркировку прибора, описанную в разделе «Знаки безопасности».

ПРЕДУПРЕЖДЕНИЯ

Общие предупреждения

- Перед включением прибора внимательно ознакомьтесь с инструкциями, приведенными в данном руководстве по эксплуатации.
- Храните руководство по эксплуатации в надежном месте, предусматривающем возможность его использования в дальнейшем.
- Следуйте процедурам установки и эксплуатации.
- Предупреждающие символы на приборе и в руководстве пользователя обязательны для исполнения.
- При нецелевом использовании оборудования возможно ухудшение защиты оборудования.
- Запрещается устанавливать запасные части или вносить несанкционированные изменения в конструкцию прибора.
- Сервисные инструкции (при их наличии) предназначены для обслуживающего персонала, прошедшего специальную подготовку. Во избежание риска поражения электрическим током к обслуживанию прибора допускаются только специалисты соответствующей квалификации. В случае возникновения каких-либо проблем или вопросов

относительно данного оборудования обратитесь в компанию Olympus или к уполномоченному представителю Olympus.

- Во избежание поражения электрическим током не прикасайтесь к внутренним проводникам разъемов.
- Во избежание поражения электрическим током и повреждения прибора не допускайте проникновения металлических или других посторонних предметов в основной блок через разъемы или любые другие отверстия.

Предупреждение о высоком напряжении

Прибор должен быть подсоединен к источнику питания соответствующего типа, указанному в паспортной табличке.

В случае использования шнура электропитания, не сертифицированного для изделий Olympus, компания не может гарантировать электробезопасность оборудования.

Меры предосторожности при использовании батарей

- Утилизация батарей должна производиться надлежащим образом, в соответствии с местными законами и правилами по ликвидации опасных отходов.
- Транспортировка использованных литий-ионных батарей регламентируется требованиями Организации Объединенных Наций, изложенными в Рекомендациях ООН по перевозке опасных грузов. Все страны и межправительственные организации, а также международные организации должны следовать принципам, заложенным в данных рекомендациях для унификации национальных законодательств в данной области. В международные организации входят: Международная Организация

гражданской авиации (ICAO), Международная Ассоциация воздушного транспорта (IATA), Международная Морская организация (IMO), Министерство транспорта США (USDOT), Министерство транспорта Канады (TC) и другие. Перед транспортировкой литий-ионных батарей необходимо обратиться к перевозчику для подтверждения действующего регламента.

- Во избежание травм не допускайте открытия, повреждения или прокалывания батарей.
- Не сжигайте батареи. Храните батареи вдали от огня и других источников тепла. Воздействие избыточного тепла (свыше 80 °С) может стать причиной взрыва и повлечь за собой серьезные травмы.
- Не допускайте падения, ударов или другого некорректного обращения с батареями, так как это может привести к вытеканию едкого и взрывоопасного содержимого элементов.
- Не замыкайте клеммы батареи. Короткое замыкание может стать причиной травмы и привести к серьезному повреждению батареи, что сделает ее нефункциональной.
- Предохраняйте батарею от воздействия влаги или дождя.
- Заряжайте батареи только внутри прибора BondMaster 600 или с помощью внешнего зарядного устройства, рекомендованного компанией Olympus.
- Используйте только батареи, поставляемые Olympus.
- Не храните батареи с остаточным зарядом менее 40 %. Перед хранением батарей зарядите их до уровня 40–80 %.
- Во время хранения поддерживайте заряд батареи на уровне 40-80 %.
- Не оставляйте батареи внутри прибора BondMaster 600 на период длительного хранения.

Защита органов слуха

ВНИМАНИЕ

Преобразователи BondMaster 600 издают звуковые сигналы, которые быстро распространяются и усиливаются при контакте с объектом контроля. Уровень громкости звука зависит от нескольких факторов, включая (кроме прочего): состав материала, частоту, протяженность дефектов и близость к объекту контроля. В некоторых случаях, уровень звука вблизи преобразователя может превышать 85 дБ. Это может привести к слуховому утомлению, а при длительном воздействии громкого звука — к возможному повреждению слуха. В частности, режимы МІА (анализ механического импеданса) и Р-С (раздельносовмещенный) могут генерировать высокие звуки и вызвать начало слуховой усталости. Учитывая различные условия тестирования, состав материалов и близость объекта контроля, компания OSSA (Olympus Scientific Solutions Americas) рекомендует выполнить анализ приложений для определения необходимых средств защиты органов слуха.

Утилизация оборудования

Перед утилизацией прибора BondMaster 600 внимательно ознакомьтесь с местными правилами утилизации электрического и электронного оборудования, и неукоснительно следуйте им.

СЕ (Директивы Европейского сообщества)

Данное устройство соответствует требованиям Директивы 2014/30/ЕС по электромагнитной совместимости и Директивы 2014/35/ЕС по низкому напряжению. Знак СЕ указывает на соответствие вышеуказанным директивам.

Директива WEEE

В соответствии с Директивой ЕС 2012/19/ЕС об Утилизации отработанного электрического и электронного оборудования (WEEE), данный символ указывает на недопустимость утилизации оборудования в качестве несортированных бытовых отходов и на необходимость его отдельной обработки. Для получения информации о системе возврата и утилизации оборудования в вашей стране обратитесь в региональное представительство компании Olympus.

Директива RoHS (Китай)

Термин *China RoHS* используется в промышленности для обозначения закона, принятого Министерством промышленности и информатизации Китайской Народной Республики для контроля загрязнения окружающей среды, исходящего от электронной продукции.

Маркировка China RoHS указывает на экологически безопасную продолжительность использования (EFUP). Период EFUP определяется количеством лет, на протяжении которых гарантируется отсутствие утечки или химического разложения подконтрольных веществ. Период EFUP для BondMaster 600 составляет 15 лет.

Примечание: Указанный период экологически безопасного использования (EFUP) не следует рассматривать как период гарантированной функциональности и работоспособности изделия.

"中国 RoHS"是一个工业术语,一般用于描述中华人民共和国信息工业部(MII)针 对控制电子信息产品(EIP)的污染所实行的法令。

电气电子产品 有害物质 限制使用标识

中国 RoHS 标识是根据"电器电子产品有害物质限制使用管理办法"以及"电子电气产品有害物质限制使用标识要求"的规定,适用于在中国销售的电气电子产品上的电气电子产品有害物质限制使用标识。

注意: 电气电子产品有害物质限制使用标识内的数字为在正常的使用条件下有害物质不会泄漏的年限, 不是保证产品功能性的年限。

部件名称		铅及其 化合物	汞及其 化合物	镉及其 化合物	六价铬及 其化合物	多溴联苯	多溴 二苯醚	
		(Pb)	(Hg)	(Cd)	(Cr(VI))	(PBB)	(PBDE)	
	机构部件	×	0	0	0	0	0	
主体	光学部件	×	0	0	0	0	0	
	电气部件	×	0	0	0	0	0	
附件		×	0	0	0	0	0	

产品中有害物质的名称及含量

本表格依据 SJ/T 11364 的规定编制。

o: 表示该有害物质在该部件所有均质材料中的含量均在 GB/T26572 规定的限量要求以下。

×: 表示该有害物质至少在该部件的某一均质材料中的含量超出 GB/T26572 规定的限量要求。

Корейская комиссия по связи (КСС)

A 급 기기 (업무용 방송통신기자재)

이 기기는 업무용 (A 급) 전자파적합기기로서 판 매자 또는 사용자는 이 점을주의하시 기 바라 며, 가정외의 지역에서 사용하는 것을 목적으로 합니다.

Директива об электромагнитной совместимости (ЭМС).

Данное оборудование генерирует и использует радиочастотное излучение, поэтому в случае несоблюдения инструкций при установке и эксплуатации оно может вызывать недопустимые помехи радиосвязи. BondMaster 600 протестирован и соответствует ограничениям для цифровых устройств в соответствии с требованиями директивы ЭМС.

Соответствие нормам FCC (США)

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

1. This device may not cause harmful interference.

2. This device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy, and if not installed and used in accordance with the instruction manual, might cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case you will be required to correct the interference at your own expense.

Данное оборудование соответствует требованиям Правил FCC Части 15. Эксплуатация прибора допускается при соблюдении следующих условий:

- 1. Данное устройство не должно создавать вредных помех;
- 2. Данное устройство должно воспринимать любые помехи, включая те, что могут вызвать нежелательные действия.

Любые изменения или модификации оборудования, не одобренные в прямой форме стороной, ответственной за соблюдение требований, могут аннулировать права пользователя на эксплуатацию оборудования.

Данное оборудование протестировано и признано соответствующим нормам, установленным для цифровых устройств класса А, согласно Части 15 Правил FCC. Эти ограничения направлены на обеспечение защиты от вредного воздействия при эксплуатации оборудования в учреждениях и на производстве. Данное оборудование генерирует, использует и может излучать радиочастотную энергию, и в случае его установки и эксплуатации вразрез с инструкцией, может стать источником недопустимых помех в радиосвязи. Использование данного оборудования в жилых районах может вызвать вредные помехи. В таком случае пользователь должен будет устранить помехи за собственный счет.

Соответствие стандарту ICES-001 (Канада)

This Class A digital apparatus complies with Canadian ICES-001.

Cet appareil numérique de la classe A est conforme à la norme NMB-001 du Canada.

Данный цифровой прибор класса А соответствует стандартам Министерства промышленности Канады ICES-001.

Информация о гарантии

Компания Olympus гарантирует отсутствие в изделии дефектов качества материала и изготовления в течение определенного периода и в соответствии с условиями, оговоренными в документе Olympus Scientific Solutions Americas Inc. *Terms and Conditions*, с которыми можно ознакомиться на сайте http://www.olympus-ims.com/ru/terms/.

Гарантия Olympus распространяется только на оборудование, которое использовалось в соответствии с правилами эксплуатации, приведенными в данном руководстве по эксплуатации, и не подвергалось неправильному обращению, попыткам неавторизованного ремонта или модификации.

При получении тщательно осмотрите прибор на предмет наличия внешних или внутренних повреждений, которые могли возникнуть при транспортировке. В случае обнаружения любых повреждений немедленно поставьте в известность транспортную компанию, поскольку обычно ответственность за повреждения при перевозке несет перевозчик. Сохраните упаковку, накладные и прочую транспортную документацию для составления претензии. После уведомления перевозчика свяжитесь с компанией Olympus для помощи по составлению актарекламации и замены поврежденного оборудования в случае необходимости.

В данном руководстве по эксплуатации приводятся сведения, необходимые для надлежащей эксплуатации приобретенного изделия Olympus. Содержащаяся в данном документе информация предназначена для использования исключительно в учебных целях, и не предназначена для конкретных приложений без предварительного независимого тестирования и проверки оператором или контролирующим специалистом. Важность такой независимой проверки процедур возрастает по мере повышения критичности исследований. По этой причине Olympus не предоставляет выраженной или подразумеваемой гарантии, что представленные в инструкции методики, примеры и процедуры соответствуют промышленным стандартам или отвечают требованиям конкретных исследований.

Компания Olympus оставляет за собой право вносить изменения в любые изделия без модификации выпущенных ранее изделий.

Техническая поддержка

Компания Olympus прилагает все усилия для предоставления максимально качественного послепродажного обслуживания и технической поддержки. При возникновении трудностей в процессе эксплуатации, а также в случае несоответствия с документацией, мы рекомендуем в первую очередь обратиться к руководству пользователя. Если вам все еще требуется помощь, обратитесь в нашу службу послепродажного обслуживания. Адрес ближайшего сервисного центра можно найти на странице: www.olympus-ims.com.

Введение

Руководство по эксплуатации содержит инструкции по использованию дефектоскопа Olympus BondMaster 600, использующего звуковые и ультразвуковые волны для обнаружения поверхностных дефектов в разных типах композиционных материалов (см. Рис. i-4 на стр. 19). Представленная в руководстве информация включает описание технологии контроля, инструкции по безопасности, характеристики аппаратного и программного обеспечения BondMaster 600.

Рис. i-4 BondMaster 600

1. Комплект поставки

BondMaster 600 доступен в двух разных конфигурациях:

- В600: Базовая модель, включающая все режимы Р-С;
- В600М: Мультимодовая модель, включающая режимы P-C, MIA (анализ механического импеданса) и резонансный метод.

Перед началом использования дефектоскопа BondMaster 600 проверьте содержимое упаковки и убедитесь в наличии всех компонентов и отсутствии дефективных элементов.

1.1 Распаковка

Сразу после получения распакуйте прибор и проверьте состояние его упаковки. Убедитесь, что ни упаковка, ни прибор не были повреждены во время транспортировки. В случае обнаружения любых повреждений немедленно поставьте в известность транспортную компанию. Сохраните упаковку и поврежденные компоненты для возможного осмотра представителем компании-перевозчика. За исключением универсального зарядного устройства/адаптера и внешних комплектующих, все опции BondMaster 600 устанавливаются до отправки. Проверьте содержимое упаковки по упаковочному листу; убедитесь в наличии всех заказанных комплектующих.

1.2 Первоначальный осмотр

После распаковки и сверки содержимого упаковки BondMaster 600 с упаковочным листом внимательно осмотрите прибор и выполните функциональное тестирование:

Первоначальный осмотр подразумевает следующие действия:

- 1. Проверьте упаковку и дефектоскоп BondMaster 600 на наличие внешних или структурных повреждений.
- 2. Включите BondMaster 600.
- 3. Дождитесь завершения загрузки и самотестирования прибора.
- 4. Дождитесь появления сообщения «Sign-On» (Вход в систему)

1.3 Содержимое комплекта

В стандартный комплект дефектоскопа BondMaster 600 входят следующие компоненты (см. Рис. 1-1 на стр. 23):

- Сертификат калибровки (Olympus Арт.: B600-CERT [U8010093]).
- Зарядное устройство/адаптер (Olympus Арт.: EP-MCA-X), где «Х» обозначает тип кабеля электропитания (см. Табл. 18 на стр. 236).
- Кабель питания переменного тока
- Кейс для транспортировки прибора (Olympus Арт.: 600-TC [U8780294])
- *Руководство по началу работы* (Olympus Арт.: DMTA-10044-01XX, где «XX» обозначает язык интерфейса (см. Табл. 20 на стр. 236)
- *Руководство по эксплуатации* BondMaster 600 и программный интерфейс на CD-ROM (Olympus Apr.: N600-CD [U8141002])
- Карта памяти microSD на 2 ГБ (Olympus Apr.: MICROSD-ADP-2GB [U8779307])
- Коммуникационный USB-кабель (Olympus Арт.: EPLTC-C-USB-A-6 [U8840031])
- Перезаряжаемый литий-ионный аккумулятор для дефектоскопа серии 600; 10,8 В; 6,8 А; 73 Вт/час (Olympus Арт.: 600-ВАТ-L-2 [U8760058])
- Держатель для 8 батарей AA с соединительным штепселем (Olympus Apt.: 600-BAT-AA [U8780295])
- Кабель BondMaster 600 для работы в режимах Р-С и MIA; длина 3,3 м, 11-штырьковые разъемы (Olympus Арт.: SBM-CPM-P11 [U8800058])
- Кабель BondMaster 600 для работы в резонансном режиме; длина 1,8 м, 6- и 11-штырьковые разъемы (Olympus Арт.: SBM-CR-P6 [U8800059])
- Ремешок на запястье, прикрепленный к прибору BondMaster 600 с левой стороны (Olympus Apt.: 38DLP-HS [U8779371])

Рис. 1-1 Содержимое кейса

Перечень дополнительных комплектующих Olympus см. в разделе «Комплектующие, запасные части и обновления» на стр. 235.

2. Краткий обзор BondMaster 600

Данная глава содержит: краткое описание дефектоскопа BondMaster 600, принцип работы прибора, перечень комплектующих и общие эксплуатационные требования.

2.1 Принцип работы и технология контроля

ВопdMaster 600 представляет собой универсальный контрольно-измерительный прибор, работающий в нескольких режимах, предназначенный для контроля структурной целостности композитных материалов и выявления возможных расслоений и непроклеев. Для каждого режима работы используются различные типы преобразователей, в зависимости от характеристик и геометрии контролируемого объекта. Возможно изготовление преобразователей для специальных пользовательских приложений. ВопdMaster 600 – это компактный и легкий дефектоскоп, работающий от внутренней батареи или от источника питания переменного тока 90–240 В, с частотой 50–60 Гц.

Во всех режимах контроля BondMaster 600, переменный электрический ток вызывает колебания пьезокристаллов в преобразователях. В зависимости от режима контроля, кристаллические колебания вызывают вибрации, по-разному используемые при передаче в объект контроля.

В раздельно-совмещенном режиме (все технологии контроля), кристаллические колебания вызывают вибрации в «виртуальной» мембране, возникшей в результате отслоения части композитного материала. Расслоение аналогично мембране, которая вибрирует легче других компонентов клеевой структуры. Мембрана быстрее всего реагирует на вибрации и генерирует колебания большей амплитуды, по сравнению с материалом.

Выявление дефектов в режиме P-С выполняется путем определения колебаний с большой амплитудой на приемном кристалле. При использовании методик PЧ и ИМПУЛЬС режима P-С (с фиксированной частотой), можно выявить расслоения в ближней зоне и в дальней зоне. В методике ИМПУЛЬС фильтр огибающей применяется к получаемым сигналам. (Термин «ИМПУЛЬС» происходит из более ранних версий прибора). В режиме P-С РАЗВЕРТКИ по частоте (или режиме качающейся частоты) используются разные частоты в зависимости, например, от толщины закрылков самолетов или стабилизаторов. Методика качающейся частоты P-С режима особенно подходит для сотовых наполнителей из алюминия.

В режиме MIA (Анализ механического импеданса) и резонансном режиме, колебания, вызванные излучающим кристаллом ПЭП, также передаются в материал образца, но в более жесткой форме. Преобразователь использует колебания образца для определения изменений в механическом импедансе, вместо использования вибраций мембраны (как в режиме P-C и методах контроля).

В режиме MIA, механический импеданс выявляется через ограниченное движение принимающего кристалла, включенного в схему механического привода. Принимающий кристалл помещен на образец с помощью вала (наконечника ПЭП). Другая сторона принимающего кристалла соединена с излучающим кристаллом с помощью не вполне упругого материала. В результате, принимающий кристалл становится более-менее ограниченным по мере изменения механического импеданса контрольного образца. При наличии дефекта, наконечник ПЭП вибрирует свободнее, а принимающий кристалл подвергается воздействию механического переменного давления; генерируется слабое напряжение, выявляемое прибором. Однако, если образец имеет большой механический импеданс (например, на отремонтированных участках композитных материалов с сотовым наполнителем), движение принимающего кристалла становится еще более сдержанным; в результате, усиливается давление и амплитудные сигналы на принимающем кристалле. Режим MIA – отличный способ идентификации отремонтированных участков и поврежденных зон в композитных материалах с сотовым наполнителем. Как правило, в режиме MIA мелкие расслоения выявляются легче, чем в раздельносовмещенном режиме.

Резонансный режим, как и режим MIA, может использоваться для контроля механического импеданса тестового образца. (В частности, термин «резонанс» может ввести в заблуждение, т.к. указывает на резонанс преобразователя, а НЕ на резонанс объекта.) В резонансном режиме, кристалл преобразователя соединен с пассивными электронными компонентами, которые формируют
резонансный фильтр. Монокристалл должен быть соединен с образцом с использованием контактной жидкости низкой вязкости. Поскольку кристалл становится частью резонансной схемы, любые изменения в электрическом импедансе будут влиять на резонансную точку (фазу и амплитуду). Электрический импеданс кристалла зависит от механического импеданса тестового образца, соединенного с кристаллом при выполнении резонансного теста. Изменения в механическом импедансе происходят при наличии расслоений или расклеивании. Любые изменения в механическом импедансе объекта отражаются в амплитуде и фазе, отображенных на экране прибора. Резонансный метод обычно используется для выявления отслоений в металлических многослойных конструкциях. В композитных материалах на основе углеродного волокна и стекловолокна, местоположение дефектов определяется с учетом отклонения фазы на экране прибора.

2.2 Разъемы

На Рис. 2-1 на стр. 28 представлена схема подключения внешних устройств (зарядного устройства/адаптера, карты памяти microSD и ПК) к BondMaster 600.

Рис. 2-1 Схема подключений BondMaster 600

Используйте только шнур питания переменного тока, прилагаемый к дефектоскопу BondMaster 600. Использование неавторизованного кабеля питания может привести к повреждению оборудования или к травме.

Разъем питания постоянного тока и разъем PROBE (для преобразователей) расположены на верхней панели BondMaster 600 (см. Рис. 2-2 на стр. 29).

Разъем PROBE (для ПЭП)

Рис. 2-2 Разъемы в верхней части прибора

Во избежание поражения электрическим током и повреждения прибора не допускайте проникновения металлических или других посторонних предметов в основной блок через разъемы или любые другие отверстия. Не прикасайтесь к внутренним проводникам разъема PROBE. Напряжение на внутреннем контакте может составлять 80 В.

Порт USB и слот для съемной карты памяти microSD расположены на правой боковой панели BondMaster 600 под крышкой отсека вводов/выводов (см. Рис. 2-3 на стр. 30).

Рис. 2-3 Разъемы ввода/вывода

Разъемы I/O и VGA расположены на задней панели BondMaster 600 вверху (см. Рис. 2-4 на стр. 31). Каждый разъем защищен резиновой заглушкой.

Рис. 2-4 Разъемы I/О и VGA OUT

2.3 Источники питания

BondMaster 600 работает от одного из трех источников электропитания:

- Зарядное устройство/адаптер BondMaster 600
- Встроенный литий-ионный аккумулятор
- Щелочные батареи

Нажмите клавишу питания (**(()**), чтобы включить BondMaster 600 (см. Рис. 2-5 на стр. 32). При нажатии клавиши прибор издает звуковой сигнал, затем, примерно через пять секунд, появляется заставка и второй звуковой сигнал.

Рис. 2-5 Расположение кнопки и индикатора питания BondMaster 600

2.3.1 Зарядное устройство/адаптер

Зарядное устройство/адаптер BondMaster 600 прилагается в комплекте с прибором. Зарядное устройство/адаптер является основным источником питания BondMaster 600, при наличии батареи или без нее. Всегда заряжайте литий-ионный аккумулятор перед использованием. Индикатор питания на передней панели прибора отображает текущее состояние зарядного устройства/адаптера (см. Рис. 2-5 на стр. 32 и Рис. 2-6 на стр. 32).

Рис. 2-6 Индикатор питания на передней панели прибора

осторожно

Используйте только кабель питания переменного тока, прилагаемый к дефектоскопу BondMaster 600. Использование неавторизованного кабеля питания может привести к повреждению оборудования или к травме.

Осторожно

Зарядное устройство/адаптер BondMaster 600 (Арт.: EP-MCA-X) используется для питания дефектоскопа и для заряда литий-ионного аккумулятора (Арт.: 600-BAT-L-2 [U8760058]).

Не пытайтесь заряжать какие-либо другие батареи (в том числе щелочные), используя аккумуляторный отсек BondMaster 600 (Арт.: 600-BAT-AA [U8780295]); не заряжайте батареи, используя другое зарядное устройство/адаптер. Это может стать причиной взрыва и повлечь за собой травму. Не пытайтесь включать или заряжать другие электронные приборы с помощью зарядного устройства/адаптера (Арт.: EP-MCA-X), так как это может привести к серьезной травме или даже смерти в результате взрыва.

Подключение зарядного устройства/адаптера

1. Подключите кабель переменного тока к зарядному устройству/адаптеру и нужной розетке электропитания (см. Рис. 2-7 на стр. 33).

Рис. 2-7 Подключение зарядного устройства/адаптера

- 2. Приподнимите резиновую защитную крышку разъема питания DC, расположенного в верхней части прибора BondMaster 600.
- 3. Подключите кабель питания постоянного тока через адаптер к разъему питания DC BondMaster 600 (см. Рис. 2-8 на стр. 34).

Рис. 2-8 Подключение кабеля питания

В Табл. 3 на стр. 35 представлены индикаторы состояния зарядного устройства/адаптера и уровня заряда батареи, отображаемые на передней панели прибора и на пользовательском интерфейсе.

Цвет индикатора заряд. устройства	Питание от сети перемен. тока	Значение индикатора	Индикатор батареи
Красный	Дa	Аккумулятор заряжается	
Выкл.	Нет	Зарядное устройство/адаптер отсутствует.	94%)
Зелёный	Да	Аккумулятор полностью заряжен. ИЛИ Зарядное устройство/адаптер подключено, но батарея отсутствует.	

Табл. 3 Индикаторы состояния зарядного устройства и уровня заряда батареи

2.3.2 Аккумуляторный отсек

Крышка аккумуляторного отсека BondMaster 600 легко открывается (без специальных инструментов), обеспечивая быстрый доступ к батарее (или целочным батареям АА в специальном держателе). С помощью двух винтов крышка отсека крепится к корпусу, обеспечивая герметичность прибора.

В центральной нижней части крышки аккумуляторного отсека имеется небольшое отверстие, закрытое изнутри специальной герметичной воздухопропускающей мембраной. Вентиляционное отверстие предохраняет прибор от повреждения в случае выхода из строя аккумулятора и выделения газа. Не допускайте прокалывания мембраны вентиляционного отверстия.

Рис. 2-9 Аккумуляторный отсек

BondMaster 600 питается от одного перезаряжаемого (внутри прибора) литийионного аккумулятора (Olympus Apt.: 600-BAT-L-2 [U8760058]), или с помощью внешнего зарядного устройства (Olympus Apt.: EPXT-EC-X). Также, для автономной работы прибора BondMaster 600 можно использовать восемь щелочных батарей AA, помещенных в специальный держатель (Olympus Apt.: 600-BAT-AA [U8780295]).

Во избежание взрыва и получения травм, используйте с BondMaster 600 только рекомендуемую Olympus аккумуляторную батарею (Арт.: 600-BAT-L-2 [U8760058]).

2.3.3 Литий-ионная аккумуляторная батарея

BondMaster 600 обычно используется как портативный прибор, работающий от литий-ионного аккумулятора и заряжается с помощью зарядного устройства/адаптера (прилагаемого в комплекте). В обычных условиях, литий-ионный аккумулятор обеспечивает длительную автономную работу прибора (от 8 до 10 часов).

ВАЖНО

Литий-ионный аккумулятор при поставке BondMaster 600 заряжен не полностью. Перед началом использования прибора в автономном режиме аккумулятор следует заряжать в течение двух-трех часов (см. «Зарядное устройство/адаптер» на стр. 32).

Установка или замена литий-ионного аккумулятора

- 1. Разверните подставку прибора (см. Рис. 2-10 на стр. 38).
- 2. Ослабьте винты (2), фиксирующие крышку аккумуляторного отсека на задней стенке прибора.
- 3. Снимите крышку аккумуляторного отсека.
- 4. Извлеките и/или установите батарею в аккумуляторный отсек.
- 5. Убедитесь, что герметизирующая прокладка аккумуляторного отсека чистая и не имеет повреждений.
- 6. Установите крышку аккумуляторного отсека на место и затяните винты.

Рис. 2-10 Извлечение литий-ионной аккумуляторной батареи

2.3.4 Щелочные батареи

Комплект BondMaster 600 включает держатель щелочных батарей (Olympus Арт.: 600-ВАТ-АА [U8780295]). Этот держатель вмещает восемь щелочных батарей АА и используется в случае, если источник переменного тока недоступен, а внутренний литий-ионный аккумулятор разряжен. В обычных условиях продолжительность работы прибора от щелочных батарей составляет минимум три часа.

Установка щелочных батарей

- 1. Разверните подставку прибора (см. Рис. 2-11 на стр. 39).
- 2. На задней панели BondMaster 600 ослабьте винты, удерживающие крышку аккумуляторного отсека, и снимите крышку.
- 3. Извлеките литий-ионную аккумуляторную батарею, если она установлена.
- 4. Поместите восемь щелочных батарей размера AA в специальный держатель.
- 5. Подключите держатель щелочных батарей к разъему внутри отсека.
- 6. Установите держатель с щелочными батареями в аккумуляторный отсек.
- 7. Установите крышку аккумуляторного отсека на место и затяните винты.

Рис. 2-11 Держатель щелочных батарей

ПРИМЕЧАНИЕ

После установки щелочных батарей индикатор батареи на пользовательском интерфейсе BondMaster 600 отображает **ALK**. Зарядное устройство/адаптер не заряжает батареи, находящиеся в держателе щелочных батарей.

2.4 Установка карты памяти microSD

Съемная карта памяти microSD на 2 Гб (Olympus Apt.: MICROSD-ADP-2GB [U8779307]) может быть установлена в BondMaster 600.

Установка съемной карты памяти microSD

- 1. Извлеките карту памяти из упаковки.
- 2. Ослабьте крепежные винты (2) и откройте дверцу отсека вводов-выводов на боковой панели BondMaster 600 (см. Рис. 2-12 на стр. 40).

Рис. 2-12 Установка карты памяти microSD

- 3. Возьмите карту памяти таким образом, чтобы надпись microSD была повернута к задней стенке прибора.
- 4. Аккуратно вставьте карту в слот microSD до щелчка.

ПРИМЕЧАНИЕ

Чтобы извлечь карту microSD, слегка нажмите на нее и отпустите. Пружинный механизм частично вытолкнет карту, после чего можно вынуть ее из слота.

2.5 Особенности аппаратного обеспечения BondMaster 600

По сравнению с предыдущей версией (BondMaster 1000e+) дефектоскоп BondMaster 600 имеет много новых и усовершенствованных функций. Перед началом работы внимательно ознакомьтесь с характеристиками прибора.

2.5.1 Аппаратное обеспечение

На Рис. 2-13 на стр. 41 и Рис. 2-14 на стр. 42 показаны основные компоненты прибора BondMaster 600.

Рис. 2-13 Дефектоскоп BondMaster 600 — Передняя панель

Рис. 2-14 Дефектоскоп BondMaster 600 — Задняя панель

2.5.1.1 Передняя панель и ручка регулятора

Ручка регулятора является важным элементом прибора BondMaster 600 и используется для редактирования различных параметров меню. В данном руководстве также используется термин «ручка» для обозначения ручки регулятора (SmartKnob).

На передней панели BondMaster 600 (по обе стороны экрана) расположены клавиши прямого доступа, которые, наряду с ручкой регулятора (SmartKnob), используются для быстрого доступа к меню и общим параметрам, а также для редактирования их значений (см. Рис. 2-15 на стр. 43).

Рис. 2-15 Передняя панель BondMaster 600 — Клавиши и ручка регулятора

2.5.1.2 Клавиатура

BondMaster 600 доступен в конфигурации с английской, китайской, японской или международной клавиатурой (см. Рис. 2-16 на стр. 44–Рис. 2-19 на стр. 45 и Табл. 4 на стр. 46). Текстовые наклейки на некоторых клавишах могут быть заменены на пиктограммы, в зависимости от конфигурации клавиатуры. В данном руководстве представлена английская клавиатура. Клавиши используются для выбора элементов меню или параметров экрана, а также редактирования значений параметров.

Рис. 2-16 Английская клавиатура BondMaster 600

Рис. 2-17 Международная клавиатура BondMaster 600

Рис. 2-18 Китайская клавиатура BondMaster 600

Рис. 2-19 Японская клавиатура BondMaster 600

Функция	Международ. обозначение	Описание		
Enter	\checkmark	Используется для выбора команд.		
Return	Ç	Используется для выхода из меню и возврата к предыдущему экрану.		
CAL/NULL	CAL	Клавиша прямого доступа; кратковременное нажатие клавиши обнуляет прибор. При нажатии и удержании клавиши вызывается мастер калибровки; данная функция доступна только в режимах РЕЗОН (резонансный метод) и MIA (анализ механического импеданса).		
GAIN	dB	Клавиша прямого доступа; отображает настройки усиления прибора: комбинированное (горизонтальное и вертикальное), только горизонтальное или только вертикальное.		
ERASE	Ø	Клавиша прямого доступа; удаляет текущее изображение.		
RUN		Клавиша прямого доступа; используется для настройки режима отображения. В зависимости от выбранного режима работы доступно несколько режимов отображения. ПРИМЕЧАНИЕ: изменение режима отображения (RUN) также меняет настройки меню BondMaster 600.		

Табл. 4 Функции клавиатуры

Функция	Международ. обозначение	Описание		
FREEZE	*	Клавиша прямого доступа; «замораживает» текущее изображение для дальнейшего анализа. В режиме фиксации изображения BondMaster 600 позволяет калибровать сигнал, изменять значение усиления или угол.		
REF/SAVE	REF	Клавиша прямого доступа; сохраняет изображения и настройки в памяти прибора. Кратковременное нажатие клавиши сохраняет текущее изображение и настройки. При нажатии и удержании клавиши текущее изображение сохраняется в памяти как опорное (эталонное) изображение.		
MAIN	~w\\\\\\Ww	Обеспечивает доступ к главному меню, которое контролирует такие функции, как: частота, усиление, угол, фильтры, РЧ-сигнал и строб.		
DISP/DOTS		Обеспечивает доступ к меню Отображение, которое контролирует такие функции, как: режим отображения, положение, трассировка и сетка. Данная клавиша также позволяет добавлять опорные точки (функция недоступна в Р-С режиме Развертки по частоте).		
ALARM	Þ	Обеспечивает доступ к меню Сигнализация, (функции: тип сигнализации, время выдержки, звуковой сигнал и положение сигнализации относительно сигнала ПЭП).		

Табл. 4	Функции	клавиатуры	(продолжение)
---------	---------	------------	---------------

Функция	Международ. обозначение	Описание	
MEM		Обеспечивает доступ к меню Память (функции: предпросмотр сохраненных файлов, вызов и редактирование сохраненных файлов, режим задержки экспозиции, время задержки и информация о пользователе).	
ADV/SETUP		Обеспечивает доступ к расширенным настройкам прибора, включая меню ВЫБОР ПРИЛОЖЕНИЯ, меню ВСЕ НАСТРОЙКИ: режим частоты, цветовая палитра, пароль, системные настройки, сброс, варианты разблокировки и правовая/нормативная информация.	
FULL/NEXT		Используется для включения полноэкранного режима отображения или для выбора элементов в меню.	
А	А	Функциональная клавиша	
В	В	Функциональная клавиша	
С	С	Функциональная клавиша	
D	D	Функциональная клавиша	
Е	Е	Функциональная клавиша	

Табл. 4	Функции	клавиатуры	(продолжение)
		~ 1	

2.5.2 Разъемы

BondMaster 600 имеет несколько типов разъемов для подключения аппаратных компонентов.

2.5.2.1 Разъем PROBE (для подключения ПЭП)

BondMaster 600 имеет 11-штырьковый разъем Fischer (PROBE) для преобразователей.

Разъем PROBE расположен в верхней части левой панели BondMaster 600 (см. Рис. 2-20 на стр. 49).

Рис. 2-20 Расположение разъема PROBE

ВНИМАНИЕ

Во избежание поражения электрическим током и повреждения прибора не допускайте проникновения металлических или других посторонних предметов в основной блок через разъемы или любые другие отверстия. Во избежание поражения электрическим током не прикасайтесь к внутренним проводникам разъема PROBE. Напряжение на внутреннем контакте может составлять 80 В.

2.5.2.2 Разъемы VGA OUT и I/O (вводы/выводы)

Разъемы I/O и VGA OUT расположены на задней панели прибора вверху (см. Рис. 2-21 на стр. 50). Каждый разъем защищен резиновой заглушкой.

Рис. 2-21 Разъем ввода/вывода (I/O) и выход VGA

Выход VGA используется для подключения прибора к стандартному аналоговому компьютерному монитору. Разъем ввода/вывода используется для подключения внешнего звукового сигнализатора или других внешних устройств для интеграции BondMaster 600 в систему. Подробнее о подключении ПК см. в разделе «Карта памяти microSD и порт USB» на стр. 51.

ВНИМАНИЕ

Не подвергайте прибор воздействию неблагоприятных условий, если разъемы I/O или VGA OUT не закрыты защитными заглушками. Во избежание появления коррозии в разъеме и повреждения прибора всегда закрывайте разъемы заглушками, если разъемы не используются.

2.5.2.3 Карта памяти microSD и порт USB

На правой боковой панели BondMaster 600, под защитной крышкой, расположены слот для карты microSD и порт USB (см. Рис. 2-22 на стр. 51). Крышка отсека вводов/выводов имеет уплотняющую прокладку, защищающую прибор от проникновения внутрь жидкостей через негерметичные разъемы.

BondMaster 600 использует внутреннюю и съемную карты памяти microSD, каждая емкостью 2 Гб. Внутренняя карта памяти microSD на 2 Гб установлена в печатную плату и используется для хранения программного обеспечения и данных. В случае повреждения прибора карту microSD можно извлечь в авторизованном центре обслуживания для восстановления важных файлов данных.

Для подключения BondMaster 600 к компьютеру используйте порт USB. Подключение к ПК требует установки интерфейсной программы для передачи файлов BondMaster PC (Olympus Apt.: B600-CD [U8141002]), прилагаемой в комплекте с прибором. Подробнее см. в разделе «Программное обеспечение BondMaster PC» на стр. 181. BondMaster 600 может напрямую работать с другими программами SPC.

Рис. 2-22 Слот для карты памяти microSD и порт USB

Крышка отсека вводов/выводов крепится двумя винтами. Для отвинчивания винтов можно использовать ребро монеты или отвертку.

ВНИМАНИЕ

Не подвергайте прибор воздействию неблагоприятных условий, если крышка отсека вводов/выводов открыта. Во избежание появления коррозии в разъеме и повреждения прибора всегда закрывайте отсек I/O крышкой, если он не используется.

2.5.3 Прочие аппаратные характеристики

Физические характеристики BondMaster 600 позволяют использовать прибор в любых климатических условиях.

2.5.3.1 Подставка BondMaster 600

Шарнирная подставка BondMaster 600 позволяет регулировать угол наклона прибора (см. Рис. 2-23 на стр. 53). Подставка крепится на приборе с помощью двух прочных поворотных планок. Подставка покрыта специальным материалом для предотвращения скольжения прибора по поверхности во время эксплуатации. Подставка имеют фигурную форму, позволяющую устанавливать прибор даже на неровной поверхности.

Рис. 2-23 Подставка BondMaster 600

2.5.3.2 Уплотнительные кольца и герметизирующие прокладки

BondMaster 600 имеет герметизирующие прокладки, надежно защищающие прибор от неблагоприятных воздействий окружающей среды. В частности:

- Уплотнение крышки аккумуляторного отсека
- Уплотнение крышки отсека вводов/выводов
- Уплотнительная мембрана вентиляционного отверстия

Убедитесь, что все уплотнительные прокладки находятся в хорошем состоянии для обеспечения герметичности прибора. Во время ежегодной калибровки необходимо проводить полный осмотр всех герметизирующих прокладок и при необходимости заменять их. Эта операция должна проводиться в авторизованном центре обслуживания Olympus.

2.5.3.3 Защита дисплея

Экран дефектоскопа BondMaster 600 покрыт защитной прозрачной пленкой. Olympus не рекомендует снимать эту пленку с дисплея. Вы можете приобрести комплект из десяти пленок для замены (Olympus Apt.: 600-DP [U8780297]).

ВНИМАНИЕ

Экран прочно присоединен к корпусу прибора, обеспечивая его герметичность. При повреждении экрана необходимо заменить всю переднюю панель вместе с клавиатурой.

2.5.4 Защита от воздействия окружающей среды

BondMaster 600 отличается прочностью и износостойкостью, и может использоваться в суровых климатических условиях. Компания Olympus использует систему стандартизации IP (защита от проникновения пыли и влаги) для оценки степени защищенности прибора.

BondMaster 600 успешно прошел испытания и сертифицирован на соответствие классу защиты IP600. Прибор спроектирован и произведен согласно данным требованиям по защите от проникновения загрязнения. Для сохранения первоначального уровня защиты прибора необходимо содержать в исправности все герметизирующие прокладки. Кроме того, вы ответственны за ежегодную доставку прибора в авторизованный центр обслуживания компании Olympus с целью проверки целостности уплотнительных элементов. Компания Olympus не гарантирует надлежащую защиту прибора от воздействий окружающей среды, если герметизирующие прокладки были повреждены. Прежде чем подвергнуть аппарат воздействию неблагоприятных погодных условий, следует оценить ситуацию и принять должные меры предосторожности.

BondMaster 600 отвечает стандартам защиты от воздействия окружающей среды, перечисленным в Табл. 8 на стр. 223.

3. Пользовательский интерфейс

В данной главе представлены основные элементы экранов и меню BondMaster 600. На задней панели прибора BondMaster 600 имеется наклейкаинструкция с кратким описанием основных функций клавиатуры (см. Рис. 3-1 на стр. 55).

Рис. 3-1 Наклейка-инструкция с описанием основных функций клавиатуры

3.1 Запуск BondMaster 600

При подключении питания, BondMaster 600 включается в одном из двух режимов, в зависимости от того, какое устройство подключено к прибору.

• Если никакой преобразователь не подключен к прибору или если подключен стандартный преобразователь (не PowerLink), на экране BondMaster 600 появляется меню быстрой конфигурации приложений (см. Рис. 3-2 на стр. 56). Выберите в меню одно из представленных стандартных приложений для автоматической конфигурации соответствующих настроек.

• Если к прибору подключен преобразователь PowerLink, BondMaster 600 открывает при запуске экран распознавания PowerLink (см. Рис. 3-3 на стр. 56), в котором можно автоматически настроить прибор для использования данного типа преобразователя.

Рис. 3-2 Выбор приложения в меню настроек

	пэп	
ОПИСАНИЕ ПЭП	9317795	ПЭП
С/Н ПЭП	V08490	
ТИП ПЭП	250 KHZ	продолж.
		-
		1

Рис. 3-3 Экран распознавания PowerLink

ПРИМЕЧАНИЕ

Приложения BondMaster 600 предназначены для быстрой настройки прибора. Тем не менее, выполняйте измерения в соответствии с указанными процедурами.

3.1.1 Навигация в меню приложений

Навигация по меню очень удобна, а возможность настройки каждого приложения позволяет немедленно переходить к измерениям. Дополнительная конфигурация прибора, как правило, не требуется.

Навигация в меню приложений

- 1. С помощью ручки регулятора выделите одно из восьми приложений.
- 2. Нажмите клавишу Enter (✓), чтобы выбрать приложение. ИЛИ

Нажмите клавишу Return (), чтобы вернуться к главному экрану BondMaster 600.

Навигация в меню приложений PowerLink

Находясь на экране распознавания устройства PowerLink (см. Рис. 3-3 на стр. 56), нажмите клавишу А, чтобы загрузить программу (сохраненную на преобразователе PowerLink). Произойдет автоматическая настройка прибора.

ИЛИ

Нажмите клавишу Return (), чтобы пропустить программу и получить доступ к экрану измерений.

3.1.2 Экран измерений

Экран измерений открывается после завершения начальных этапов меню быстрой настройки или меню PowerLink (см. Рис. 3-4 на стр. 58).

Рис. 3-4 Экран измерений

ПРИМЕЧАНИЕ

На Рис. 3-4 на стр. 58 представлен пример стандартного экрана измерений. Внешний вид экрана может меняться, в зависимости от выбранного приложения или загруженной программы PowerLink (см. Рис. 3-2 на стр. 56 и Рис. 3-3 на стр. 56).

Индикатор заряда батареи всегда отображен в верхней части экрана, за исключением полноэкранного режима (см. Табл. 3 на стр. 35). Время и дата также отображаются на экране, за исключением полноэкранного режима.

Прямоугольное окошко в верхнем левом углу экрана является окном быстрого доступа (см. Рис. 3-5 на стр. 59). При нажатии клавиши GAIN (**dB**) окно отображает настройки одного из типов усиления:

- Комбинированное (горизонтальное и вертикальное) усиление
- Только горизонтальное усиление
- Только вертикальное усиление

Окно быстрого доступа отображается на экране до нажатия любой другой клавиши.

Рис. 3-5 Передняя панель BondMaster 600 и экран измерений

Строка показаний в режиме реального времени отображает конфигурируемые пользователем результаты (измерений) [см. Рис. 3-5 на стр. 59]. Возможно отображение максимум двух значений. Строка показаний может отображать одно или два значения, или может быть деактивирована. Подробнее см. в разделе «Отображение значений в режиме реального времени» на стр. 62.

Настройки прибора отображаются с правой стороны главного экрана. Отображаемая информация может меняться в зависимости от нажатой клавиши меню.

3.2 Выбор элементов меню

На передней панели BondMaster 600, внизу экрана расположены клавиши меню: MAIN (¬₩₩₩), DISP/DOTS (◯), ALARM (♥Д), MEM (♥Д) и ADV SETUP ([†] Щ). При нажатии любой из этих клавиш открывается оперативное меню с правой стороны экрана (см. Рис. 3-5 на стр. 59). В зависимости от приложения, при повторном нажатии клавиши меню, открывается вторичное меню с доступными для данной клавиши параметрами.

Выбор элемента меню

1. Нажмите на одну из клавиш меню, расположенных в нижней части

DISP/DOTS (), ALARM (), MEM (), MEM ()), или ADV SETUP (). Повторное нажатие клавиши меню позволяет просматривать доступные

опции и обновлять настраиваемые параметры.

 Чтобы выбрать параметр для редактирования, нажмите на одну из функциональных клавиш (А, В, С, D или Е), расположенных рядом с функцией. Выбранная функция будет выделена.

С помощью ручки регулятора настройте значение функции. Выбранное значение будет автоматически введено (и сохранено), без нажатия клавиши Enter.

3.3 Отображение всех функций одновременно — Меню ВСЕ НАСТРОЙКИ

В качестве альтернативы оперативному меню, BondMaster 600 имеет возможность отображения всех функций одновременно с помощью меню ВСЕ НАСТРОЙКИ. Меню **ВСЕ НАСТРОЙКИ** содержит три основных элемента: полоса заголовка, параметры и справочная строка (см. Рис. 3-6 на стр. 61).

			— Парам	етры —		
				-		
Строка загодовка —		D			n	
отрока заголовка	ВСЕ НАСТРОИКИ РС (РЧ)					_
	РЕЖИМ	PC (P4)	HACTOTA	10,0kHz	ХҮ СИГНІ	OTP.
	тип пэп		угол	120,0deg	ΦΟΡΜΑ	прям
	C/H	No Probe	ГУСИЛ	4,0dB	BEPX.	70,0%
	ВОЗБ. ПЭП	СРЕДНИЙ	В УСИЛ	4,0dB	нижн.	30,0%
	ФНЧ	10Hz	УСИЛРЧ	45,0dB	ЛЕВ.	30,0%
	<u>HACT.</u>HOBT	300			ПРАВ.	70,0%
	DSP MODE	РЧ + ХҮ	Г полож	50%	ХҮ СИГН2	вык
	ОТОБРАЖ РЧ	РЧ	впол	50%	ΦΟΡΜΑ	КРУГ.
	CETKA	МЕЛ			РАДИУС	20,0%
	послсвеч.	вык			ГОРИЗ.	50,0%
	ОЧИСТ.ЭКР	вык			BEPT.	50,0%
	ВРЕМЯ СКАН	5,0Sec				
	ЗАПОЛ.РАЗВ	ВКЛ.				
	СТРОБ	ABTO	СИГН. РЧ	пол.	СКАН СИГН	вык
	длина	2000us	BEPX.	70,0%	BEPX.	75,0%
	циклы	10	нижн.	30,0%	нижн.	25,0%
Справочная строка —	НАЖМИТЕ [А] Д	цля 1го СТС	ЛБЦА, [В] ДЛЯ	2го, [С] ДЛЯ	Зго, [Е] ДЛЯ СЛ	ЕД.

Рис. 3-6 Меню ВСЕ НАСТРОЙКИ

3.3.1 Использование меню ВСЕ НАСТРОЙКИ

Доступ к меню **ВСЕ НАСТРОЙКИ** осуществляется нажатием клавиши ADV SETUP (

Использование меню ВСЕ НАСТРОЙКИ

- 1. Нажмите клавишу меню ADV SETUP (
- 2. Нажмите клавишу В.
- 3. Нажмите клавишу FULL NEXT (—), чтобы выбрать параметр для редактирования.
- 4. С помощью ручки регулятора выберите нужное значение.
- 5. Нажмите клавишу FULL NEXT (,, чтобы выбрать дополнительные параметры для редактирования. ИЛИ

Нажмите $oldsymbol{\Omega}$, чтобы покинуть меню и вернуться к предыдущему экрану.

ПРИМЕЧАНИЕ

Поскольку BondMaster 600 имеет огромное количество функций, меню **BCE НАСТРОЙКИ** содержит несколько экранов, или страниц. Справочная строка внизу меню предоставляет дополнительную информацию для помощи в навигации.

3.3.2 Специальные функции меню ВСЕ НАСТРОЙКИ

Меню ВСЕ НАСТРОЙКИ имеет две специальные функции: ВНЕШ.ЗВ.СИГН (внешний звуковой сигнализатор) и АН.ВЫХ.ПИТ. (аналоговый выход питания). Эти функции активируют выходные разъемы на задней панели BondMaster 600 (см. Рис. 2-21 на стр. 50). Для активации данных функций выполните указания, изложенные в разделе «Использование меню ВСЕ НАСТРОЙКИ» на стр. 61.

ПРИМЕЧАНИЕ

При работе с прибором BondMaster 600 в условиях высокого уровня шума используйте звуковой сигнализатор. Звуковой сигнализатор подключается к разъему ввода/вывода на задней панели прибора и увеличивает звук сигнализации до 70 дБ (подробнее см. в Табл. 8 на стр. 223).

3.4 Отображение значений в режиме реального времени

Строка показаний в режиме реального времени отображает конфигурируемые пользователем результаты (измерений) [см. Рис. 3-5 на стр. 59]. Возможно отображение до двух значений одновременно из списка доступных параметров — число доступных значений зависит от выбранного режима работы. Строка показаний может отображать одно или два значения, или может быть деактивирована.

Могут быть отображены следующие значения (см. Рис. 3-7 на стр. 63 и Рис. 3-8 на стр. 64):
- LIVE AMPL Максимальное расстояние между текущим (горизонтальным, вертикальным) положением точки ХҮ (исключая режим развертки) и нулевым положением.
- LIVE VERT Максимальное расстояние между текущим вертикальным (Y) положением точки (исключая режим развертки) и нулевым положением.
- LIVE HORZ Максимальное расстояние между текущим горизонтальным (X) положением точки (исключая режим развертки) и нулевым положением.
- LIVE ANGL Угол текущего положения ХҮ относительно нулевой точки (за исключением режима РАЗВ.).
- **AMPLITUDE P-P** Максимальный вектор амплитуды, от пика до пика (только в режиме PA3B.).

Рис. 3-7 Пример LIVE AMPL, LIVE VERT, LIVE HORZ и LIVE ANGL

Рис. 3-8 Пример VOLTS P-P

3.4.1 Отображение показаний в режиме реального времени

Для включения данного режима воспользуйтесь клавишей меню ADV SETUP

Включение режима отображения показаний в реальном времени

- 1. Нажмите клавишу меню ADV SETUP (
- 2. Нажмите клавишу В.
- 3. Нажмите клавишу С.
- 4. Нажмите клавишу FULL NEXT (→) для перехода к желаемому типу и/или местоположению.

ПРИМЕЧАНИЕ

Для отображения показаний в режиме реального времени на экране измерений можно выбрать только **BEPX.ЛЕВ** или **BEPX.ПРАВ**. Доступные местоположения в полноэкранном режиме см. в разделе «Отображение реальных показаний в полноэкранном режиме (клавиша FULL NEXT)» на стр. 65.

5. С помощью ручки регулятора сделайте выбор.

6. Нажмите клавишу FULL NEXT () для перехода к желаемому типу и/или местоположению. ИЛИ

Нажмите клавишу () для выхода.

3.4.2 Отображение реальных показаний в полноэкранном режиме (клавиша FULL NEXT)

Реальные показания можно отображать в полноэкранном режиме с помощью

клавиши FULL NEXT () [см. Рис. 3-5 на стр. 59]. Местоположение реальных показаний на полном экране отличается от местоположения на экране измерений, и задается пользователем.

Варианты расположения отображаемых значений в полноэкранном режиме: ВЕРХ.ЛЕВ, ВЕРХ.ЦЕНТР, ВЕРХ.ПРАВ, ЛЕВ., ПРАВ., НИЖ.ЛЕВ. или НИЖ.ЦЕНТР.

ПРИМЕЧАНИЕ

Точность результатов измерений в режиме реального времени во многом зависит от настроек **ОЧИСТ.ЭКР** (очистить экран) и **ПОСЛЕСВЕЧ.** (послесвечение).

Отображения реальных показаний в полноэкранном режиме (клавиша FULL NEXT)

- 1. Нажмите клавишу меню ADV SETUP (
- 2. Нажмите клавишу В.
- 3. Нажмите клавишу Е.
- 4. Нажмите клавишу В.
- 5. Нажмите клавишу FULL NEXT () для перехода к желаемому типу и/или местоположению.
- 6. С помощью ручки регулятора сделайте выбор.

7. Нажмите клавишу FULL NEXT (→) для перехода к желаемому типу и/или местоположению. ИЛИ

Нажмите клавишу (С) для выхода.

4. Начальные установки

В данной главе представлены базовые конфигурации дефектоскопа BondMaster 600.

4.1 Язык пользовательского интерфейса и десятичный разделитель

Доступны следующие языки пользовательского интерфейса BondMaster 600: английский, французский, испанский, немецкий, японский, китайский, русский, шведский, итальянский, португальский, норвежский, венгерский, польский, голландский и чешский. Можно также задать тип разделителя в числовых значениях.

Выбор языка пользовательского интерфейса и десятичного разделителя

1. Дважды нажмите клавишу меню ADV SETUP (фукциональную клавишу В для доступа к экрану СИСТЕМ.НАСТР. (см. Рис. 4-1 на стр. 68).

НАСТР. СИСТЕМЫ						
ЯЗЫК					РУССКИЙ	
РАЗДЕЛИТЕЛЬ					(,) RATRΠAE	
АВТО УДАЛ.					ВКЛ.	
ПЕРЕКРЕСТЬЕ					ВКЛ.	
ОКНО ПРИЛОЖЕНИЯ ПРИ ЗАПУСКЕ					ВКЛ.	
яркость					100%	
ВЫХОД VGA					ВКЛ.	
		_				
год	2014	МЕСЯЦ		8	ДЕНЬ	19
РЕЖИМ	12 Ч	ЧАС		8 AM	МИНУТА	20
ФОРМАТ ДАТЫ					MM/DD/YYYY	
П. РУЧКУ РЕГ. ДЛЯ РЕДАКТ. И [NEXT] ДЛЯ НАВИГАЦИИ						

Рис. 4-1 Экран СИСТЕМНЫЕ НАСТРОЙКИ

- 2. Находясь в окне СИСТЕМ.НАСТР, нажмите клавишу FULL NEXT (—), чтобы выделить параметр ЯЗЫК.
- 3. С помощью ручки регулятора выберите нужный язык.
- 4. Нажмите клавишу FULL NEXT (,), чтобы выделить параметр **РАЗДЕЛИТЕЛЬ**.
- 5. С помощью ручки регулятора выберите нужный элемент для разделения целой и дробной частей числа: **ТОЧКА (.)** или **ЗАПЯТАЯ (.)**.
- 6. Нажмите \mathbf{Q} , чтобы вернуться к экрану измерений.

4.2 Настройка часов

BondMaster 600 имеет встроенные часы и указатель даты. Вы можете настроить дату и время, и выбрать необходимый формат. BondMaster 600 сохраняет результаты измерений с датой их получения.

Настройка часов

1. Дважды нажмите клавишу меню ADV SETUP (), а затем клавишу В для доступа к экрану СИСТЕМ.НАСТР. (см. Рис. 4-1 на стр. 68).

- 2. Установите ГОД, МЕСЯЦ, ДЕНЬ, РЕЖИМ (12 Ч или 24 Ч), ЧАСЫ, МИНУТЫ и ФОРМАТ ДАТЫ следующим образом:
 - a) Нажмите клавишу FULL NEXT (→), чтобы выделить параметр (ГОД, МЕСЯЦ, ДЕНЬ и т.д.).
 - b) С помощью ручки регулятора отредактируйте значение.
- 3. Нажмите (), чтобы вернуться к экрану измерений.

4.3 Настройка экрана

Можно редактировать некоторые параметры экрана, такие как: яркость, автоудаление, выход VGA и окно приложения при запуске.

Изменение настроек экрана

- 1. Дважды нажмите клавишу меню ADV SETUP (* 式).
- 2. Нажмите клавишу В для доступа к экрану СИСТЕМ.НАСТР.
- 3. Находясь в окне СИСТЕМ.НАСТР. (см. Рис. 4-1 на стр. 68), с помощью клавиши FULL NEXT () выделите желаемый параметр и, используя ручку

регулятора, отредактируйте значение:

- а) Настройте ЯРКОСТЬ экрана на один из следующих значений: 0 %, 25 %, 50 %, 75 % или 100 % (подробнее см. в разделе «Настройка яркости экрана» на стр. 70).
- *b*) Установите **ВЫХОД VGA** на **ВКЛ** или **ВЫКЛ**.
- *c)* Установите **АВТО УДАЛ.** на **ВКЛ** или **ВЫКЛ** (см. раздел «Настройка параметра Автоудаление» на стр. 70).
- *d)* Установите **ОКНО ПРИЛОЖЕНИЯ ПРИ ЗАПУСКЕ** на **ВКЛ** или **ВЫКЛ** (см. раздел «Выбор начального экрана» на стр. 71).
- 4. Нажмите 🕥, чтобы вернуться к экрану измерений.

4.4 Настройка яркости экрана

Настройте уровень яркости экрана BondMaster 600, изменяя интенсивность подсветки. Яркость экрана может быть настроена на 0 %, 25 %, 50 %, 75 % или 100 %. Чем больше процент, тем ярче экран. По умолчанию, яркость экрана установлена на 50 %. BondMaster 600 имеет цветной трансфлективный экран, который отражает естественное освещение и становится ярче при прямом освещении. При хорошем освещении **ЯРКОСТЬ** экрана можно уменьшить.

Настройка яркости экрана

- 1. Дважды нажмите клавишу меню ADV SETUP, а затем клавишу В для доступа к экрану **СИСТЕМ.НАСТР.** Нажмите клавишу FULL NEXT несколько раз, пока не выделится параметр **ЯРКОСТЬ.**
- С помощью ручки регулятора выберите уровень ЯРКОСТИ экрана: 0 %, 25 %, 50 %, 75 % или 100 %.
- 3. Нажмите , чтобы вернуться к экрану измерений.

ПРИМЕЧАНИЕ

Снижение уровня **ЯРКОСТИ** экрана увеличивает срок службы батареи. Данные по сроку службы батареи получены при **ЯРКОСТИ** подсветки монитора, установленной на **50** %.

4.5 Настройка параметра Автоудаление

Можно задать команду автоматического удаления содержимого экрана

BondMaster 600 после нажатия клавиши CAL NULL (). По умолчанию, функция **АВТО УДАЛ.** активирована (**ВКЛ**), но может быть отключена (**ВЫКЛ**).

Настройка параметра Автоудаление

1. Дважды нажмите клавишу меню ADV SETUP (🖽), а затем клавишу В для

доступа к экрану СИСТЕМ.НАСТР. Нажмите клавишу FULL NEXT () несколько раз, пока не выделится параметр АВТО УДАЛ.

- 2. С помощью ручки регулятора отключите (ВЫКЛ) или включите (ВКЛ) функцию АВТО УДАЛ.
- 3. Нажмите \mathbf{Q} , чтобы вернуться к экрану измерений.

4.6 Выбор начального экрана

Можно настроить BondMaster 600 на автоматическое отображение экрана МЕНЮ ПРИЛОЖЕНИЙ при запуске прибора. Данную функцию можно отключить, тогда прибор при включении будет открывать экран измерений. По умолчанию, функция ОКНО ПРИЛОЖЕНИЯ ПРИ ЗАПУСКЕ включена (ВКЛ).

Выбор начального экрана

- 1. Дважды нажмите клавишу меню ADV SETUP (⁺), а затем клавишу В для доступа к экрану СИСТЕМ.НАСТР. Нажмите клавишу FULL NEXT (→) несколько раз, пока не выделится параметр ОКНО ПРИЛОЖЕНИЯ ПРИ ЗАПУСКЕ.
- 2. С помощью ручки регулятора отключите (**ВЫК***Л*) или включите (**ВК***Л*) функцию.
- 3. Нажмите 🕥, чтобы вернуться к экрану измерений.

4.7 Активация функции «перекрестие»

Можно установить BondMaster 600 на отображение перекрестия для большей визуализации нулевого положения (см. Рис. 4-2 на стр. 72). Перекрестие доступно только для экранов ХҮ (с полиэкраном или без), но работает во ВСЕХ режимах.

Активация функции перекрестия

1. Дважды нажмите клавишу меню ADV SETUP (), а затем клавишу В для доступа к экрану СИСТЕМ.НАСТР. Нажмите клавишу FULL NEXT () несколько раз, пока не выделится параметр ПЕРЕКРЕСТИЕ.

- 2. С помощью ручки регулятора отключите (ВЫКЛ) или включите (ВКЛ) функцию ПЕРЕКРЕСТИЕ.
- 3. Нажмите Ω , чтобы вернуться к экрану измерений.

Рис. 4-2 Перекрестие и нулевая точка

5. Функции управления

В данной главе представлены функции управления дефектоскопа BondMaster 600.

5.1 PowerLink

Функция PowerLink позволяет дефектоскопу BondMaster 600 автоматически распознавать преобразователи Olympus PowerLink BondMaster при их подключении к прибору. Прибор затем конфигурируется в зависимости от параметров, запрограммированных в идентификационный модуль PowerLink. Все преобразователи PowerLink запрограммированы на распознавание по номеру модели, рабочей частоте, усилению и серийному номеру.

При подключении преобразователя PowerLink к дефектоскопу BondMaster 600 открывается экран распознавания PowerLink (см. Рис. 5-1 на стр. 73).

	ПЭП	
	0077707	
ОПИСАНИЕ ПЭП	9317795	пэп
С/Н ПЭП	V08490	
ТИП ПЭП	250 KHZ	продолж.

На данном этапе, если функция PowerLink была активирована, настройки ПЭП будут загружены в BondMaster 600. Если функция PowerLink отключена, данный этап будет пропущен. В обоих случаях, прибор переходит к экрану измерений.

При запуске дефектоскопа с подключенным преобразователем PowerLink нажмите клавишу А для включения функции PowerLink, или нажмите продолжения работы без включения функции PowerLink.

5.2 Элементы управления BondMaster 600

Элементы управления BondMaster 600 представлены на Рис. 5-2 на стр. 74.

Рис. 5-2 Элементы управления BondMaster 600

5.2.1 Дисплей

BondMaster 600 имеет цветной жидко-кристаллический экран (ЖК-экран) с разрешением 600 x 480 пикселей (VGA). На ЖК-дисплее отображаются сигнал преобразователя, различные меню, строка состояния, сообщения и, при необходимости, включается полноэкранный режим. Доступны несколько режимов отображения. Режим отображения (RUN) может быть изменен с

помощью клавиши меню RUN (🕒).

5.2.2 Кнопка питания и кнопка блокировки

Кнопка питания (**(**) используется для включения и выключения прибора. При запуске, прибор обычно восстанавливает последнюю использованную конфигурацию.

Кнопка блокировки ()) используется для снятия или активации блокировки прибора. Блокировка BondMaster 600 деактивирует клавиши прямого доступа, функциональные клавиши (А, В, С, D и Е), клавиши меню и ручку регулятора. Данная функция предотвращает случайное внесение изменений в откалиброванный, готовый к измерениям прибор.

При активации блокировки, в верхнем правом углу экрана, под индикатором заряда батареи, загорается индикатор блокировки, и только клавиши прямого доступа CAL NULL (), ERASE (), FREEZE () и REF SAVE () остаются функциональными. При попытке доступа к заблокированной функции внизу экрана появляется сообщение **Параметр заблокирован**.

5.2.3 Функциональные кнопки

Функциональные клавиши, расположенные с правой стороны экрана BondMaster 600, используются для выбора параметров прибора для настройки. При нажатии функциональной клавиши (А, В, С, D или E) выделяется расположенный рядом параметр.

5.2.4 Клавиши меню

Клавиши меню, расположенные внизу экрана BondMaster 600, используются для быстрого выбора меню. Каждая клавиша меню обеспечивает прямой доступ к двум и более подменю. Повторное нажатие клавиши меню позволяет переключаться между различными меню. Нажатие функциональной клавиши (A, B, C, D или E) рядом с элементом меню позволяет редактировать элемент или открывает доступ к дополнительному меню или подменю.

Доступны следующие клавиши меню:

MAIN (~~)

Обеспечивает доступ к главному меню, которое контролирует такие функции, как: частота, усиление, угол и фильтры.

DISP/DOTS (

Обеспечивает доступ к меню Отображение, которое контролирует такие функции, как: режим отображения, положение, трассировка и сетка.

ALARM (ᢙ)

Обеспечивает доступ к меню Сигнализация, которое контролирует такие функции, как: тип сигнализации, время выдержки, громкость звукового сигнала и положение сигнализации.

MEM ())

Обеспечивает доступ к меню Память, которое контролирует такие функции, как: предпросмотр сохраненных файлов, вызов и редактирование сохраненных файлов, режим задержки экспозиции, время задержки и информация о пользователе.

ADV SETUP (

Обеспечивает доступ к меню **ВСЕ НАСТРОЙКИ**, которое контролирует такие параметры, как: режим частоты, цветовая палитра, пароль, опции разблокировки и сброс. Данное меню отображает все настройки BondMaster 600 одновременно.

5.2.5 Ручка регулятора

Ручка регулятора (SmartKnob) расположена в верхней левой части прибора BondMaster 600. Ее первоначальной функцией является настройка выбранного параметра BondMaster 600. Поворот ручки регулятора по часовой стрелке увеличивает значение выделенного параметра, вращение ручки против часовой стрелки уменьшает значение выделенного параметра. В некоторых случаях, ручка регулятора может использоваться для «ответа» на подсказку прибора.

5.2.6 Скрытая функция — Экранный снимок

BondMaster 600 позволяет делать экранные снимки и отправлять их в виде файла изображения на съемную карту памяти microSD. Для этого нужно

нажать клавишу REF SAVE (¬₩₩₩), удерживая при этом клавишу меню MAIN

(日). В качестве альтернативы, для выполнения экранных снимков можно использовать программное обеспечение BondMaster PC (см. «Получение экранных снимков с помощью BondMaster PC» на стр. 181).

5.3 Режимы и меню

Доступ к различным меню BondMaster 600, представленным в данном разделе, осуществляется нажатием соответствующей клавиши меню (см. раздел «Клавиши меню» на стр. 75).

ПРИМЕЧАНИЕ

Меню BondMaster 600 варьируется в зависимости от:

- Режима работы;
- Режима отображения (функция RUN).

Таким образом, параметры РЕЖИМ и ОТОБРАЖЕНИЕ определяют содержание меню.

5.3.1 Режим РС РЧ — ГЛАВНОЕ меню

Раздельно-совмещенный (РС) режим ОТОБРАЖ РЧ аналогичен данному режиму в импульсном режиме. Однако, отображаемые данные представляют собой необработанный усиленный сигнал от преобразователя (см. Рис. 5-3 на стр. 78).

Рис. 5-3 ОТОБРАЖ РЧ

В главном меню РС-РЧ могут быть настроены следующие параметры (см. Рис. 5-4 на стр. 79):

- ЧАСТОТА
- УСИЛ РЧ
- ДЛИНА
- СТРОБ
- ОТОБРАЖ РЧ
- ЦИКЛЫ
- Г/В УСИЛ (горизонтальное/вертикальное усиление)
- ГУСИЛ (горизонтальное усиление)
- В УСИЛ (вертикальное усиление)
- УГОЛ
- ЧАСТ.ПОВТ (частота повторения импульсов)
- ВОЗБ.ПЭП (возбуждение преобразователя)
- ФНЧ (фильтр низких частот)

Рис. 5-4 Главное меню РС (РЧ)

Изменение параметров в Главном меню РС (РЧ)

ПРИМЕЧАНИЕ

Следующая ниже информация применима в случае, когда режим

ЧАСТОТА

Параметр **ЧАСТОТА** определяет частоту тонального сигнала. Частота настраивается в диапазоне от 1 до 50 кГц.

Для изменения параметра **ЧАСТОТА** нажмите клавишу А и с помощью ручки регулятора отредактируйте значение.

COBET

Выделив параметр **ЧАСТОТА**, нажмите клавишу Enter (\checkmark) для включения мелкого шага регулировки (0,1). По умолчанию, ручка регулятора установлена на крупный шаг регулировки (1); параметр **ЧАСТОТА** выделен при активировании данной функции. Для отключения крупного шага регулировки

повторно нажмите 🗸

УСИЛЕНИЕ РЧ

Настройка **УСИЛ РЧ**, или вертикальное усиление, контролирует усиление тонального сигнала. Усиление может быть настроено в диапазоне от 0 до 70 дБ.

УСИЛ РЧ – это основная настройка частоты, и должна быть отредактирована в первую очередь, при изменении значения частоты.

Для изменения параметра **УСИЛ РЧ** нажмите клавишу В и с помощью ручки регулятора отредактируйте значение.

ДЛИНА

Настройка ДЛИНА устанавливает интервал времени после начала тонального сигнала, отображаемого на графике зависимости Y (амплитуда) – T (время).

Для изменения параметра **ДЛИНА** нажмите клавишу С и с помощью ручки регулятора отредактируйте значение.

СТРОБ

Настройка **СТРОБ** устанавливает координаты на **ОТОБРАЖ РЧ** (амплитуда и фаза), из которых рассчитываются координаты «плавающей точки» на плоскости ХҮ. Положение **СТРОБ** определяет амплитуду и фазу сигнала на отображаемой плоскости ХҮ. Для лучших результатов, установите **СТРОБ** слева от первого максимального пика на **ОТОБРАЖ РЧ**, или на его максимальном пике. Настройка строба **АВТО** автоматически считывает показание для положения максимального сигнала.

Для изменения параметра **СТРОБ** нажмите клавишу D и с помощью ручки регулятора отредактируйте значение.

ОТОБРАЖ РЧ (Отображение в РЧ-режиме)

Параметр ОТОБРАЖ РЧ редактирует настройки отображения и может быть установлен на режим РЧ или ИМПУЛЬС. (Термин «ИМПУЛЬС» происходит из более ранних версий прибора). Режим отображения ИМПУЛЬС использует фильтр, который выделяет огибающую РЧ сигнала.

Для изменения параметра **ОТОБРАЖ РЧ** нажмите клавишу Е и с помощью ручки регулятора отредактируйте значение.

ЦИКЛЫ

Параметр ЦИКЛЫ используется для настройки числа колебаний тональных сигналов в режимах отображения РС РЧ и ИМПУЛЬС, и настраивается в диапазоне от 1 до 10.

Для редактирования параметра ЦИКЛЫ нажмите клавишу меню MAIN

Г/В УСИЛ (Горизонтальное/вертикальное усиление)

Настройка Г/В УСИЛ используется в режимах ХҮ отображения (RUN). Данный параметр позволяет отдельно редактировать горизонтальное и вертикальное усиление графика ХҮ.

Для изменения параметра Г/В УСИЛ, нажмите клавишу меню MAIN (*) один или два раза (в зависимости от выбранного режима RUN), затем клавишу В и с помощью ручки регулятора установите желаемое значение.

Г УСИЛ (Горизонтальное усиление)

Параметр **Г УСИЛ** редактирует настройки горизонтального (X) усиления и используется в режимах XY-отображения (RUN).

Для изменения параметра **Г УСИЛ**, нажмите клавишу меню MAIN (¬₩₩₩) один или два раза (в зависимости от выбранного режима RUN), затем клавишу С и с помощью ручки регулятора установите желаемое значение.

В УСИЛ (Вертикальное усиление)

Параметр **В УСИЛ** редактирует настройки вертикального (Y) усиления и используется в режимах XY-отображения (RUN).

угол

Настройка **УГОЛ** используется только в режимах ХҮ-отображения (RUN). Данный параметр позволяет контролировать угол поворота отображаемой ХҮ-плоскости вместе с сигналами. Этот параметр используется, например, в случаях, когда необходимо чтобы угол удаленного дефекта (нарушения связи) был отличен от угла ближайшего дефекта.

Для изменения параметра **УГОЛ**, нажмите клавишу меню MAIN (один или два раза (в зависимости от выбранного режима RUN), затем клавишу Е и с помощью ручки регулятора установите желаемое значение.

ЧАСТ.ПОВТ (Частота повторения импульсов)

Настройка ЧАСТ.ПОВТ задает частоту повторения тонального сигнала.

Для редактирования параметра ЧАСТ.ПОВТ нажмите клавишу меню

MAIN (⁻, затем клавишу С и с помощью ручки регулятора установите желаемую частоту повторения сигнала.

ВОЗБ.ПЭП (Возбуждение преобразователя)

BondMaster 600 имеет три уровня возбуждения ПЭП: НИЗК, СРЕД и ВЫСОК. Размах напряжения от пика до пика составляет 2 В, 6 В и 12 В.

Для настройки уровня возбуждения ПЭП дважды нажмите клавишу меню

ФНЧ

Настройка **ФНЧ** используется только в режимах ХҮ-отображения (RUN). Настройте данный параметр для получения более плавного сигнала в режиме ХҮ-отображения.

Для изменения параметра **ФНЧ**, нажмите клавишу меню MAIN (⁻ два или три раза (в зависимости от выбранного режима RUN), затем нажмите клавишу Е и с помощью ручки регулятора установите желаемое значение.

5.3.2 Режим РС РАЗВ. — ГЛАВНОЕ меню

В режиме Р-С развертки преобразователь возбуждается сигналом с заданной начальной и конечной частотой. Сигнал на экране представляет частоту возбуждения в режиме развертки (см. Рис. 5-5 на стр. 82).

Рис. 5-5 Режим Р-С развертки по частоте

Следующие параметры могут быть настроены в главном меню РС развертки:

- УГОЛ
- УСИЛ (Г/В УСИЛ)
- НАЧ.ЧАСТ. (начальная частота)
- КОНЕЧ.ЧАСТ. (конечная частота)
- Ч. RATE (частота развертки)
- ОТСЛЕЖ.ЧАСТ1 (отслеживание частоты 1)
- ОТСЛЕЖ.ЧАСТ2 (отслеживание частоты 2)
- ГУСИЛ (горизонтальное усиление)
- В УСИЛ (вертикальное усиление)
- ВОЗБ. ПЭП (возбуждение преобразователя); подробнее см. в разделе «Режим РС РАЗВ. — ГЛАВНОЕ меню» на стр. 82

Изменение параметров в Главном меню Р-С развертки

ПРИМЕЧАНИЕ

Следующая ниже информация применима в случае, если режим

угол

Параметр **УГОЛ** используется для настройки угла поворота всего сигнала развертки на экране.

Для изменения параметра **УГОЛ** нажмите клавишу А и с помощью ручки регулятора отредактируйте значение.

УСИЛ (Г/В УСИЛ)

Параметр УСИЛ используется для настройки общего усиления сигнала.

НАЧ.ЧАСТ. (начальная частота)

Параметр **НАЧ.ЧАСТ.** используется для настройки начальной точки (значения) частоты развертки.

Для изменения параметра **НАЧ.ЧАСТ.** нажмите клавишу С и с помощью ручки отредактируйте значение.

КОНЕЧ.ЧАСТ. (конечная частота)

Параметр КОНЕЧ.ЧАСТ. используется для настройки конечной точки (значения) частоты развертки.

Для изменения параметра **КОНЕЧ.ЧАСТ.** нажмите клавишу D и с помощью ручки отредактируйте значение конечной частоты.

SW.RATE (Ч. РАЗВ., частота развертки)

Параметр Ч. РАЗВ используется для настройки частоты развертки: НИЗК., СРЕД или ВЫСОК.

Для изменения параметра **Ч. РАЗВ** нажмите клавишу Е и с помощью ручки отредактируйте значение частоты развертки.

ОТСЛЕЖ.ЧАСТ1 (отслеживание частоты 1)

Параметр ОТСЛЕЖ.ЧАСТ1 по умолчанию выключен (ВЫКЛ). Для редактирования параметра ОТСЛЕЖ.ЧАСТ1 нажмите клавишу меню

- 1. Измерьте бездефектную часть образца и настройте усиление таким образом, чтобы избежать насыщения сигнала.
- 2. Измерьте дефектную часть образца и изучите область СПЕКТРа.
- 3. Определите зону, в которой наблюдаются наибольшие различия между результатами сканирования бездефектной и дефектной частей образца. Переместите курсор **ОТСЛЕЖ.ЧАСТ1** в данную зону.

ОТСЛЕЖ.ЧАСТ2 (отслеживание частоты 2)

Параметр **ОТСЛЕЖ.ЧАСТ2** по умолчанию выключен (ВЫКЛ). Для редактирования параметра **ОТСЛЕЖ.ЧАСТ2** нажмите клавишу меню

MAIN (-WWW), затем клавишу В и с помощью ручки регулятора установите желаемое значение. Данный параметр доступен только в режиме отображения SPEC+XY или СПЕКТР. Для правильной настройки параметра ОТСЛЕЖ.ЧАСТ2 выполните следующее:

- 1. Измерьте бездефектную часть образца и настройте усиление таким образом, чтобы избежать насыщения сигнала.
- 2. Измерьте дефектную часть образца и изучите область СПЕКТРа.

Определите зону, в которой наблюдаются наибольшие различия между результатами сканирования бездефектной и дефектной частей образца. Переместите курсор **ОТСЛЕЖ.ЧАСТ2** в данную зону.

ПРИМЕЧАНИЕ

Функция отслеживания частоты используется для разработки приложений и создания процедур. Данная функция позволяет отслеживать до двух устанавливаемых пользователем частот и отображает непрерывную кривую на ХҮ-плоскости, отмечая положение заданной частоты на кривой сигнала Р-С развертки. Функция отслеживания частоты доступна только в режиме Р-С. Данная функция лучше всего работает, когда режим **Ч.РАЗВ.** установлен на **НИЗК.**, а диапазон **НАЧ.** и **КОНЕЧ.** частоты развертки сужен до соответствующего диапазона частот.

Г УСИЛ (Горизонтальное усиление)

Параметр **Г УСИЛ** используется для настройки горизонтального усиления BondMaster 600.

Для редактирования параметра Г УСИЛ нажмите клавишу меню MAIN

(->>), затем клавишу С и с помощью ручки регулятора установите желаемое значение усиления.

В УСИЛ (Вертикальное усиление)

Параметр **В УСИЛ** используется для настройки вертикального усиления BondMaster 600.

Для редактирования параметра В УСИЛ нажмите клавишу меню MAIN

(*), затем клавишу D и с помощью ручки регулятора установите желаемое значение усиления.

5.3.3 Режим MIA — Меню MAIN (Главное)

В режиме MIA (анализ механического импеданса) сигнал преобразователя, расположенного над бездефектной частью объекта, сравнивается с сигналом преобразователя, расположенного над дефектной зоной. Это позволяет определить подходящую частоту для проведения контроля (см. Рис. 5-6 на стр. 86).

Рис. 5-6 Отображение в режиме MIA

Следующие параметры могут быть настроены в главном меню режима MIA:

- ЧАСТОТА
- УСИЛ (Смешанное)
- ГУСИЛ (Горизонтальное усиление)
- В УСИЛ (Вертикальное усиление)
- УГОЛ
- ВОЗБ.ПЭП (Возбуждение преобразователя)
- ФНЧ (Фильтр низких частот)

Изменение параметров в ГЛАВНОМ меню режима MIA

ПРИМЕЧАНИЕ

Подробнее о настройке параметров **УСИЛ**, **Г УСИЛ**, **В УСИЛ** и **ВОЗБ. ПЭП** см. в разделе «Режим РС РАЗВ. — ГЛАВНОЕ меню» на стр. 82. Описание параметров подразумевает установку BondMaster 600 в режим МІА и нажатие клавиши меню MAIN (

ЧАСТОТА

Параметр ЧАСТОТА используется для настройки частоты сигнала.

Для изменения параметра **ЧАСТОТА** нажмите клавишу A и с помощью ручки отредактируйте значение.

угол

Параметр УГОЛ используется для настройки угла сигнала.

Для изменения параметра **УГОЛ** нажмите клавишу Е и с помощью ручки отредактируйте значение.

ФНЧ (Фильтр нижних частот)

Параметр **ФНЧ** может быть установлен в диапазоне от 1 до 480 Гц, плюс широкая полоса частот. Фильтр нижних частот настраивается с шагом 1–50 Гц, с шагом 2–100 Гц, с шагом 5–200 Гц, с шагом 10–300 Гц и с шагом 20–480 Гц, плюс широкая полоса частот.

Для настройки **ФНЧ** нажмите клавишу Е и с помощью ручки установите желаемое значение.

5.3.4 Режим РЕЗОН — ГЛАВНОЕ Меню

Резонансный режим (РЕЗОН) использует преобразователь, который производит резонансные колебания на определенной частоте. При выборе резонансного режима прибор посылает сигнал, чтобы определить частоту резонанса преобразователя. Отображаются амплитуда и фаза сигнала развертки (см. Рис. 5-7 на стр. 87).

Рис. 5-7 Резонансный режим

Следующие параметры могут быть настроены в Главном меню резонансного (РЕЗОН) режима:

- ЧАСТОТА
- **УСИ***Л* (Смешанное)
- ГУСИЛ (Горизонтальное усиление)
- В УСИЛ (Вертикальное усиление)
- УГОЛ
- ВОЗБ.ПЭП (Возбуждение преобразователя)
- ФНЧ (Фильтр низких частот)

Изменение параметров в Главном меню резонансного (РЕЗОН) режима:

ПРИМЕЧАНИЕ

5.3.5 Режим РС РЧ — Меню DISP/DOTS (Отображение/точки)

Меню **DISP/DOTS** (Отображение/точки) позволяет изменять настройки отображения экрана BondMaster 600.

Следующие параметры могут быть настроены в меню **DISP/DOTS** режима PC PЧ:

- РЕЖ ОТОБР
- КУРСОР
- CETKA
- полож.
- ГПОЛОЖ
- В ПОЛОЖ
- СОХР. СЛЕД.

- ПЕРЕЗАП. | ТЧК
- УДАЛ. ТЧК
- УДАЛ. ВСЕ
- УСТ.ЭТАЛ
- ОЧИСТ.ЭКР
- ПОСЛСВЕЧ.
- ВРЕМЯ СКАН

Изменение параметров меню DISP/DOTS режима РЧ (Р-С)

ПРИМЕЧАНИЕ

Следующая ниже информация применима в случае, если режим BondMaster 600 установлен на Р-С РЧ и нажата клавиша меню DISP/DOTS

(___).

РЕЖ ОТОБР

Параметр **РЕЖ ОТОБР** используется для настройки текущего режима отображения, в котором работает преобразователь (см. Рис. 5-8 на стр. 90).

Для изменения параметра **РЕЖ ОТОБР** нажмите клавишу A и с помощью ручки отредактируйте значение.

ПРИМЕЧАНИЕ

Доступ к параметру РЕЖ ОТОБР также осуществляется нажатием клавиши

прямого доступа RUN (), расположенной на передней панели BondMaster 600 слева, под ручкой регулятора.

Изменение параметра РЕЖ ОТОБР меняет наличие доступных функций меню

МАІN [Глав.] (√₩₩), DISP/DOTS [Отображ/точки] (◯) и ALARM [Сигн.]

Рис. 5-8 Настройка РЕЖИМ ОТОБРАЖЕНИЯ

КУРСОР

Параметр **КУРСОР** активирует/деактивирует отображение точки или прямоугольника на экране.

Для изменения параметра **КУРСОР** нажмите клавишу С и с помощью ручки отредактируйте значение.

СЕТКА

Параметр **СЕТКА** используется для настройки координатной сетки BondMaster 600. Можно выбрать один из пяти вариантов: **ВЫКЛ**, **10** × **10**, **МЕЛКАЯ**, **КРУПНАЯ** и **WEB**. По умолчанию, BondMaster 600 использует сетку 10 × 10.

Для настройки сетки нажмите клавишу D. Выделив параметр **СЕТКА**, с помощью ручки регулятора установите желаемое значение.

ВЫКЛ.

Прибор не отображает координатную сетку.

10 × 10

Отображается координатная сетка 10 на 10, с несколькими неиспользуемыми ячейками с левой и с правой стороны экрана.

МЕЛКАЯ

Отображается сетка с 13 горизонтальными (центрированными) и 10 вертикальными делениями. Деления сетки влево и вправо вдвое меньше обычной ширины ячейки.

КРУПНАЯ

Отображается сетка с 6,5 горизонтальными и 5 вертикальными центрированными делениями. Деления сетки вверху и внизу – вдвое меньше обычной ширины ячейки, а самые левые и самые правые деления сетки равны одной четверти обычной ширины ячейки.

WEB

Отображает полярную сетку.

полож.

Параметр ПОЛОЖ. используется для настройки нулевого положения плавающей точки на экране. Доступны пять предустановленных нулевых положений: ЦЕНТР, НИЖ.ПРАВ., НИЖ.ЦЕНТР, ВЕРХ.ЦЕНТР и ВЕРХ.ЛЕВ; а также настраиваемое пользователем положение ПОЛЬЗ.. По умолчанию, нулевое положение установлено в центре экрана прибора.

Для настройки нулевого положения нажмите клавишу С. Выделив параметр **ПОЛОЖ.**, установите желаемое значение с помощью ручки регулятора.

Г ПОЛОЖ (Горизонтальное положение)

Настройка Г ПОЛОЖ устанавливает нулевое положение плавающей точки по горизонтальной оси.

Для изменения параметра **Г ПОЛОЖ** нажмите клавишу D и с помощью ручки отредактируйте значение горизонтального положения.

В ПОЛ (Вертикальное положение)

Настройка В ПОЛ устанавливает нулевое положение плавающей точки по вертикальной оси.

Для изменения параметра **В ПОЛ** нажмите клавишу Е и с помощью ручки отредактируйте значение вертикального положения.

СОХР. СЛЕД.

Настройка **COXP.** СЛЕД. позволяет сохранять положения точки на экране BondMaster 600. При активации данного параметра **COXP.** СЛЕД. сохраняет положение точки вместе с числовым значением на экране (см. Рис. 5-9 на стр. 92).

Рис. 5-9 Сохраненные точки

Для сохранения положения точки нажмите клавишу А. Повторно нажмите клавишу А для сохранения следующей точки.

ПЕРЕЗАП. | ТЧК

Настройка ПЕРЕЗАП. | ТЧК позволяет перезаписать положение точки при случайном нажатии кнопки.

ПРИМЕЧАНИЕ

Функция **ПЕРЕЗАП. | ТЧК** позволяет перезаписать только текущее положение точки.

Для перезаписи положения точки нажмите клавишу В.

УДАЛ.ТЧК

Настройка УДАЛ. ТЧК стирает положение точки.

ПРИМЕЧАНИЕ

Функция УДАЛ. ТЧК позволяет стереть только текущее положение точки.

Для удаления положения точки нажмите клавишу С. Используйте клавишу С для удаления последующих точек в обратном порядке.

УДАЛ. ВСЕ

Настройка УДАЛИТЬ ВСЕ позволяет стереть все положения точек.

Для удаления всех точек на экране нажмите клавишу D.

ПРИМЕЧАНИЕ

Нажатие кнопки **УДАЛИТЬ ВСЕ** удаляет все положения точек на экране; данное действие необратимо.

УСТ.ЭТАЛ (Установка опорного изображения)

Параметр **УСТ.ЭТАЛ** используется для настройки опорного изображения экрана BondMaster 600. Данное изображение отображается после нажатия клавиши ERASE.

Для установки опорного изображения экрана BondMaster 600 нажмите клавишу Е. В качестве альтернативы, опорный параметр может быть

активирован нажатием клавиши прямого доступа REF SAVE (開) и ее удержанием до звукового сигнала.

ОЧИСТ.ЭКР (Очистка экрана)

Параметр **ОЧИСТ.ЭКР** настраивает период автоматической очистки экрана BondMaster 600. Данный параметр может быть установлен в диапазоне от 0 (Выкл) до 60 секунд, с шагом 0,1 секунды (мелкий шаг, по умолчанию). Можно установить шаг настройки **ОЧИСТ.ЭКР** на 1 секунду (крупный шаг) нажатием клавиши Enter. При активации крупного шага настройки параметр **ОЧИСТ.ЭКР** будет выделен, как показано на Рис. 5-10 на стр. 94.

Для изменения параметра **ОЧИСТ.ЭКР** нажмите клавишу A и с помощью ручки отредактируйте значение.

Рис. 5-10 Мелкий (слева) и крупный (справа) шаги настройки ОЧИСТ. ЭКР

ПРИМЕЧАНИЕ

Функция очистки экрана недоступна, если активирована функция (ПОСЛСВЕЧ.).

ПОСЛСВЕЧ. (Послесвечение)

Настройка **ПОСЛСВЕЧ.** активирует автоматический сброс экрана. Можно настроить дисплей на импедансную плоскость (не развертка), чтобы трассировка сигналов на экране была удалена после заданного промежутка времени. Промежуток времени может быть задан в пределах от 0,1 до 10 сек, с шагом 0,1 сек. По умолчанию, функция **ПОСЛСВЕЧ.** отключена (**ВЫКЛ**).

Для активации функции послесвечения нажмите клавишу В. Выделив параметр ПОСЛСВЕЧ., с помощью ручки регулятора установите желаемое значение.

ВРЕМЯ СКАН

Позволяет устанавливать продолжительность отображения в режиме СКАН.

Для изменения параметра ВРЕМЯ СКАН нажмите клавишу меню

DISP/DOTS ((___), затем клавишу Е и с помощью ручки регулятора установите желаемое значение.

5.3.6 Режим РС РАЗВ. — Меню DISP/DOTS (Отображение/точки)

Следующие параметры могут быть настроены в меню DISP/DOTS режима PC PA3B.:

- РЕЖ ОТОБР
- КУРСОР
- CETKA
- ОЧИСТ.ЭКР
- ЗАПИСЬ

ПРИМЕЧАНИЕ

Подробнее о настройке параметров **РЕЖ ОТОБР, КУРСОР, СЕТКА** и **ОЧИСТ.ЭКР**см. в разделе «Режим РС РЧ — Меню DISP/DOTS (Отображение/точки)» на стр. 88. Описание параметров подразумевает установку BondMaster 600 в режим РС РАЗВ. и нажатие клавиши меню

DISP/DOTS (U).

ЗАПИСЬ

Настройка **ЗАПИСЬ** позволяет отображать до двух частотных характеристик на ХҮ-плоскости.

Для изменения параметра ЗАПИСЬ нажмите клавишу меню DISP/DOTS

(U), затем клавишу Е и с помощью ручки регулятора установите желаемое значение.

5.3.7 Режим MIA — Меню DISP/DOTS (Отображение/точки)

Следующие параметры могут быть настроены в меню DISP/DOTS режима MIA:

- РЕЖ ОТОБР
- полож.
- **H POS** (Горизонтальное положение)
- В ПОЛ (Вертикальное положение)
- СОХР. СЛЕД.
- ПЕРЕЗАП.|ТЧК

- УДАЛИТЬ ТЧК
- УДАЛИТЬ ВСЕ
- УСТ.ЭТАЛ
- ОЧИСТ.ЭКР (Очистка экрана)
- ПОСЛСВЕЧ.
- КУРСОР
- CETKA
- ВРЕМЯ СКАН

ПРИМЕЧАНИЕ

Подробнее о настройке параметров см. в разделе «Режим РС РЧ — Меню DISP/DOTS (Отображение/точки)» на стр. 88. Описание параметров подразумевает установку BondMaster 600 в режим MIA и нажатие клавиши

меню DISP/DOTS (U).

5.3.8 Режим РЕЗОН (Резонансный) — Меню DISP/DOTS (Отображение/точки)

Следующие параметры могут быть настроены в меню **DISP/DOTS** резонансного режима (PE3OH):

- РЕЖ ОТОБР
- полож.
- НРОЅ (Горизонтальное положение)
- В ПОЛ (Вертикальное положение)
- СОХР. СЛЕД.
- ПЕРЕЗАП. | ТЧК
- УДАЛИТЬ ТЧК
- УДАЛИТЬ ВСЕ
- УСТ.ЭТАЛ
- ОЧИСТ.ЭКР (Очистка экрана)
- ПОСЛСВЕЧ.
- КУРСОР

- CETKA
- ВРЕМЯ СКАН

ПРИМЕЧАНИЕ

Подробнее о настройке параметров см. в разделе «Режим РС РЧ — Меню DISP/DOTS (Отображение/точки)» на стр. 88. Описание параметров подразумевает установку BondMaster 600 в режим РЕЗОН и нажатие клавиши

меню DISP/DOTS (U)

5.3.9 Режим РС РЧ – Меню СИГН. (РЧ-отображение)

Следующие параметры могут быть настроены в меню СИГН. режима PC (PY) в PY-отображении (RF RUN):

- СИГН. РЧ
- BEPX.
- НИЖН.
- ВЫДЕРЖКА
- ЗВУК.СИГН

ПРИМЕЧАНИЕ

Следующая ниже информация применима в случае, если режим

BondMaster 600 установлен на РС (РЧ) и нажата клавиша меню ALARM (

СИГН. РЧ

Параметр СИГН. РЧ используется для настройки типа РЧ-сигнализации и может быть установлен на ВЫКЛ, ПОЛОЖИТ. или ОТРИЦАТ.

Для изменения параметра **СИГН. РЧ** нажмите клавишу A и с помощью ручки отредактируйте значение.

BEPX.

Настройка **BEPX.** задает верхний порог сигнализации. Отображаемая величина представляет процентное значение высоты экрана. Пример данного элемента управления представлен на Рис. 5-11 на стр. 98. Для изменения **BEPX.** порога сигнализации нажмите клавишу В и с помощью ручки отредактируйте значение.

Рис. 5-11 Настройка порога срабатывания сигнализации

НИЖН.

Настройка **НИЖН.** задает нижний порог сигнализации. Отображаемая процентная величина представляет процентное значение высоты экрана. Пример данного элемента управления представлен на Рис. 5-11 на стр. 98.

Для изменения **НИЖН.** порога сигнализации нажмите клавишу С и с помощью ручки отредактируйте значение.

выдержка

Параметр **ВЫДЕРЖКА** устанавливает продолжительность условия сигнализации после достижения порогового значения. Продолжительность условия сигнализации устанавливается в диапазоне от 0 (Выкл) до 10 сек. Пример данного элемента управления представлен на Рис. 5-12 на стр. 99.

Для изменения параметра **ВЫДЕРЖКА** нажмите клавишу D и с помощью ручки отредактируйте значение.

Рис. 5-12 Настройка ВЫДЕРЖКИ сигнализации

ЗВУК.СИГН

Настройка **ЗВУК.СИГН** регулирует звуковой сигнал. Звуковой сигнал может быть выключен (**ВЫКЛ**) или включен (**ВКЛ**) [см. Рис. 5-13 на стр. 99].

Для изменения параметра **ЗВУК.СИГН** нажмите клавишу Е и с помощью ручки отредактируйте значение.

Рис. 5-13 Настройка ЗВУКОВОГО СИГНАЛА

5.3.10 Режим РС РЧ – Меню СИГН. (РЧ+ХҮ и ХҮ-отображение)

Следующие параметры могут быть настроены в меню СИГН режима РС (РЧ) в RF+XY и XY-отображении:

- СИГН. РЧ (см. «Режим РС РЧ Меню СИГН. (РЧ-отображение)» на стр. 97)
- **ХҮ СИГН1** (см. «Режим РС РАЗВ. Меню СИГН.» на стр. 100)
- **ХҮ СИГН2** (см. «Режим РС РАЗВ. Меню СИГН.» на стр. 100)
- **ВЫДЕРЖКА** (см. «Режим РС РЧ Меню СИГН. (РЧ-отображение)» на стр. 97)
- **ЗВУК.СИГН** (см. «Режим РС РЧ Меню СИГН. (РЧ-отображение)» на стр. 97)

5.3.11 Режим РС РЧ – Меню СИГН. (ХҮ-СКАН и ХҮ-отображение)

Следующие параметры могут быть настроены в меню СИГН режима РС (РЧ) в XY-CKAH и XY-отображении:

- СИГН СКАН (Сигнализация сканирования) [см. «Режим МІА Меню Сигнализация» на стр. 107]
- **ХҮ СИГН1** (см. «Режим РС РАЗВ. Меню СИГН.» на стр. 100)
- ХҮ СИГН2 (см. «Режим РС РАЗВ. Меню СИГН.» на стр. 100)
- **ВЫДЕРЖКА** (см. «Режим РС РЧ Меню СИГН. (РЧ-отображение)» на стр. 97)
- **ЗВУК.СИГН** (см. «Режим РС РЧ Меню СИГН. (РЧ-отображение)» на стр. 97)

5.3.12 Режим РС РАЗВ. — Меню СИГН.

Следующие параметры могут быть настроены в меню СИГН режима РС РАЗВ.:

- Меню УСТАНОВ.:
 - СИГН. СПЕКТР (Сигнализация спектра)
 - ХҮ СИГН1
 - ХҮ СИГН2
 - ВЫДЕРЖКА
 - ЗВУК.СИГН
- Меню **ХҮ СИГН1**:

- ФОРМА
- Меню **ХҮ СИГН2**:
 - ФОРМА

ПРИМЕЧАНИЕ

Подробнее о настройке параметров **ВЫДЕРЖКА** и **ЗВУК.СИГН** см. в разделе «Режим РС РЧ – Меню СИГН. (РЧ-отображение)» на стр. 97. Описание параметров подразумевает установку BondMaster 600 в режим РС РАЗВ. и

нажатие клавиши меню ALARM (

СИГН. СПЕКТР (Сигнализация спектра)

Параметр СИГН. СПЕКТР активирует сигнализацию режима отображения СПЕКТР и может быть установлен на положительное или отрицательное значение.

Для изменения параметра **СИГН. СПЕКТР** нажмите клавишу A и с помощью ручки отредактируйте значение.

ХҮ СИГН1

Параметр **ХҮ СИГН1** (ХҮ сигн. 1) настраивает ХҮ-сигнализацию 1 и может быть установлен на **ВЫК***Л*, **ПОЛОЖИТ.** (положительная частота) или **ОТРИЦАТ.** (отрицательная частота).

Для изменения параметра XY-сигнализации 1 нажмите клавишу В и с помощью ручки отредактируйте значение.

ХҮ СИГН2

Параметр **ХҮ СИГН2** (ХҮ сигн. 2) настраивает ХҮ-сигнализацию 2 и может быть установлен на **ВЫК***Л*, **ПОЛОЖИТ.** (положительная частота) или **ОТРИЦАТ.** (отрицательная частота).

Для изменения параметра XY-сигнализации 2 нажмите клавишу В и с помощью ручки отредактируйте значение.

Примеры параметров **ВЫДЕРЖКА** и **ЗВУК.СИГН** режима РС РАЗВ. представлены на Рис. 5-14 на стр. 102 и Рис. 5-15 на стр. 102.

Рис. 5-14 Настройка ВЫДЕРЖКИ сигнализации в режиме РС РАЗВ.

Рис. 5-15 Настройка ЗВУКОВОГО СИГНАЛА в режиме РС РАЗВ.

ФОРМА

ПРИМЕЧАНИЕ

Настройка **ФОРМА** доступна только при активации **ХҮ СИГН1** или **ХҮ СИГН2**. Таким образом, представленная ниже информация применяется только при условии активации данных сигнализаций. Настройка **ФОРМА** задает форму порога сигнализации. Возможно три варианта: **ПРЯМ**, **СЕКТОР** или **КРУГ**.

Для изменения формы порога XY СИГН1 дважды нажмите клавишу меню

ALARM (), затем клавишу А и, с помощью ручки регулятора, установите желаемую форму сигнализации.

Для изменения формы порога XY СИГН2 трижды нажмите клавишу меню

ALARM ((), затем клавишу А и, с помощью ручки регулятора, установите желаемую форму сигнализации. сигнализации.

ПРИМЕЧАНИЕ

Выбранная **ФОРМА** может быть настроена с помощью функциональных клавиш (В, С, D и Е). В Табл. 5 на стр. 103 представлены функциональные клавиши для установки различных форм сигнализации.

Форма	Настройка ФОРМЫ ХҮ СИГН1 и ХҮ СИГН2 — Функциональные клавиши				
	В	С	D	Е	
ПРЯМ	BEPX.	НИЖН.	ЛЕВ.	ПРАВ.	
СЕКТОР	НАРУЖ.ДИ А.	ВНУТ.ДИА М	НАЧ. УГОЛ	КОНЕЧ.УГ ОЛ	
КРУГ.	РАДИУС	ГОРИЗ.	BEPT.	N/A	

Табл. 5 ХҮ СИГН1 и ХҮ СИГН2 — Настройка ФОРМЫ

5.3.12.1 Изменение параметров ПРЯМ сигнализации в режиме РС РАЗВ.

ПРИМЕЧАНИЕ

Представленная ниже информация применима при условии активации меню **ХҮ СИГН1** или **ХҮ СИГН2** и выборе опции **ПРЯМ** в меню **ФОРМА** (см. Рис. 5-16 на стр. 104).

Рис. 5-16 Настройка формы ПРЯМ сигнализации в режиме РС РАЗВ.

Для изменения формы ПРЯМ сигнализации (XY ALM 1 или XY ALM 2) отредактируйте следующие параметры:

- **BEPX.**: настраивает верхний порог ПРЯМ сигнализации. Для изменения настройки нажмите клавишу В и, с помощью ручки регулятора, установите желаемое значение.
- **НИЖН.**: настраивает нижний порог ПРЯМ сигнализации. Для изменения настройки нажмите клавишу С и, с помощью ручки регулятора, установите желаемое значение.
- **ЛЕВ.**: настраивает левую часть порога ПРЯМ сигнализации. Для изменения настройки нажмите клавишу D и, с помощью ручки регулятора, установите желаемое значение.
- **ПРАВ.**: настраивает правую часть порога ПРЯМ сигнализации. Для изменения настройки нажмите клавишу Е и с помощью ручки регулятора установите желаемое значение.

5.3.12.2 Изменение параметров СЕКТОР. сигнализации в режиме РС РАЗВ.

ПРИМЕЧАНИЕ

Следующая ниже информация применима в случае активации меню **ХҮ СИГН1** или **ХҮ СИГН2** и выборе **СЕКТОР** в меню **ФОРМА** (см. Рис. 5-17 на стр. 105).

Рис. 5-17 Настройка формы СЕКТОР. сигнализации в режиме РС РАЗВ.

Для изменения формы СЕКТОР. сигнализации (ХҮ СИГН1 или ХҮ СИГН2) отредактируйте следующие параметры:

- **НАРУЖ.ДИА**.: настраивает наружный диаметр порога СЕКТОР. сигнализации. Для изменения настройки нажмите клавишу В и с помощью ручки регулятора установите желаемое значение.
- **ВНУТ.ДИАМ**: настраивает внутренний диаметр порога СЕКТОР. сигнализации. Для изменения настройки нажмите клавишу С и с помощью ручки регулятора установите желаемое значение.
- **НАЧ. УГОЛ**: устанавливает начальный угол порога СЕКТОР. сигнализации. Для изменения настройки нажмите клавишу D и, с помощью ручки регулятора установите желаемое значение.
- КОНЕЧ.УГОЛ: устанавливает конечный угол порога СЕКТОР. сигнализации. Для изменения настройки нажмите клавишу Е и с помощью ручки регулятора установите желаемое значение.

5.3.12.3 Изменение параметров КРУГ. сигнализации в режиме РС РАЗВ.

ПРИМЕЧАНИЕ

Следующая ниже информация применима в случае активации меню **ХҮ СИГН1** или **ХҮ СИГН2** и выборе опции **КРУГ.** в меню **ФОРМА** (см. Рис. 5-18 на стр. 106).

Для изменения формы КРУГ. сигнализации (ХҮ СИГН1 или ХҮ СИГН2) отредактируйте следующие параметры:

- **РАДИУС**: настраивает диаметр порога КРУГ. сигнализации. Для изменения настройки нажмите клавишу В и с помощью ручки регулятора установите желаемое значение.
- ГОРИЗ.: настраивает горизонтальное положение порога КРУГ. сигнализации. Для изменения настройки нажмите клавишу С и с помощью ручки регулятора, установите желаемое значение.
- **BEPT.**: настраивает вертикальное положение порога КРУГ. сигнализации. Для изменения настройки нажмите клавишу D и с помощью ручки регулятора, установите желаемое значение.

5.3.12.4 Изменение СПЕКТР. параметров сигнализации в режиме РС РАЗВ.

ПРИМЕЧАНИЕ

Следующая ниже информация применяется в случае активации меню СИГН. СПЕКТР.

Доступны следующие опции СИГН. СПЕКТР:

• КАНАЛ: выбирает канал, где сигнализация устанавливается в режиме СПЕКТР-отображения (АМПЛИТУДА или ФАЗА).

- **BEPX.**: настраивает верхний порог ПРЯМ сигнализации. Для изменения настройки нажмите клавишу В и, с помощью ручки регулятора, установите желаемое значение.
- **НИЖН.**: настраивает нижний порог ПРЯМ сигнализации. Для изменения настройки нажмите клавишу С и, с помощью ручки регулятора, установите желаемое значение.
- **ЛЕВ.**: настраивает левую часть порога ПРЯМ сигнализации. Для изменения настройки нажмите клавишу D и, с помощью ручки регулятора, установите желаемое значение.
- **ПРАВ.**: настраивает правую часть порога ПРЯМ сигнализации. Для изменения настройки нажмите клавишу Е и, с помощью ручки регулятора, установите желаемое значение.

5.3.13 Режим MIA — Меню Сигнализация

Следующие параметры могут быть настроены в меню СИГН режима MIA:

- Меню УСТАНОВ.:
 - СКАН СИГН (Сигнализация сканирования)
 - ХҮ СИГН1
 - ХҮ СИГН2
 - ВЫДЕРЖКА
 - ЗВУК.СИГН
- Меню **ХҮ СИГН1**:
 - ФОРМА
- Меню **ХҮ СИГН2**:
 - ФОРМА

ПРИМЕЧАНИЕ

Подробнее о настройке параметров **ХҮ СИГН** и **ФОРМА** см. в разделе «Режим РС РАЗВ. — Меню СИГН.» на стр. 100. Подробнее о параметрах **ВЫДЕРЖКА** и **ЗВУК.СИГН** см. в разделе «Режим РС РЧ – Меню СИГН. (РЧ-отображение)» на стр. 97. Описание параметров подразумевает установку BondMaster 600 в режим

MIA и нажатие клавиши меню ALARM (🏵).

СКАН СИГН (Сигнализация сканирования)

Настройка СКАН СИГН позволяет устанавливать порог на экране СКАН.

Для изменения параметра **СКАН СИГН** нажмите клавишу А и с помощью ручки отредактируйте значение.

Примеры параметров **ВЫДЕРЖКА** и **ЗВУК.СИГН** режима МІА представлены на Рис. 5-19 на стр. 108 и Рис. 5-20 на стр. 108.

Рис. 5-19 Настройка ВЫДЕРЖКИ сигнализации режима МІА

Рис. 5-20 Настройка ЗВУКОВОГО СИГНАЛА в режиме МІА

5.3.14 РЕЗОНАНАСНЫЙ Режим — Меню Сигнализация

Следующие параметры могут быть настроены в меню СИГН режима РЕЗОН:

- Меню УСТАНОВ.:
 - ХҮ СИГН1
 - ХҮ СИГН2
 - СКАН СИГН (Сигнализация сканирования)
 - ВЫДЕРЖКА
 - ЗВУК.СИГН
- Меню **ХҮ СИГН1**:
 - ФОРМА
- Меню **ХҮ СИГН2**:
 - ФОРМА

ПРИМЕЧАНИЕ

Подробнее о настройке параметров **ХҮ СИГН** и **ФОРМА** см. в разделе «Режим PC PA3B. — Меню СИГН.» на стр. 100. Подробнее о параметре **ВРЕМЯ СКАН** см. в разделе «Режим МІА — Меню Сигнализация» на стр. 107. Подробнее о параметрах **ВЫДЕРЖКА** и **ЗВУК.СИГН** см. в разделе «Режим PC PЧ – Меню СИГН. (РЧ-отображение)» на стр. 97. Описание параметров подразумевает установку BondMaster 600 в резонансный режим (РЕЗОН) и нажатие клавиши

меню ALARM (🏵).

Примеры параметров **ВЫДЕРЖКА** и **ЗВУК.СИГН** режима РЕЗОН представлены на Рис. 5-21 на стр. 110 и Рис. 5-22 на стр. 110.

Рис. 5-21 Настройка ВЫДЕРЖКИ сигнализации в РЕЗОН. режиме

Рис. 5-22 Настройка ЗВУКОВОГО СИГНАЛА в РЕЗОН. режиме

5.3.15 Меню МЕМ (Память)

Меню **MEM** содержит функции хранения программ и экранных снимков. Различные функции редактирования меню включают: просмотр сохраненных данных, вызов сохраненных данных, редактирование имен файлов, добавление примечаний, установку опорного изображения и удаление сохраненных данных. BondMaster 600 способен сохранять и восстанавливать все настройки прибора. По умолчанию, все сохраненные данные содержат имя файла и отметки даты/времени. Если во время сохранения данных к прибору подключен преобразователь PowerLink, файл сохраняет номер и характеристики ПЭП.

После успешного сохранения данных можно редактировать имя файла, используя до 29 буквенно-цифровых символов. Можно также добавлять к файлу комментарии и примечания.

Редактирование имен файлов и примечаний осуществляется с использованием передней панели прибора, или с помощью прилагаемого программного обеспечения BondMaster 600.

ПРИМЕЧАНИЕ

При вызове программы (сохраненного файла данных) текущие активные настройки прибора перезаписываются и не могут быть восстановлены, если только эти настройки не были предварительно сохранены в другой программе.

Доступны следующие функции памяти МЕМ:

ПРЕДПРОСМ.

Используется для просмотра ранее сохраненных экранных снимков. Для просмотра сохраненного файла данных нажмите клавишу меню MEM

(), с помощью ручки регулятора выделите желаемый файл и нажмите клавишу А. Экранный снимок прибора, сохраненный вместе с полученными данными, будет отображен на экране BondMaster 600. Могут быть выполнены следующие действия:

- Для возврата назад (к предыдущему меню) нажмите клавишу А.
- Для вызова сохраненного файла данных нажмите клавишу В.
- Для установки файла данных в качестве опорного изображения нажмите клавишу D.

вызвать

Данная функция сбрасывает текущие настройки BondMaster 600 и загружает настройки прибора, относящиеся к вызванному файлу данных.

Для вызова сохраненного файла данных нажмите клавишу меню МЕМ

), с помощью ручки регулятора выделите желаемый файл и нажмите

клавишу В. BondMaster 600 вызывает файл данных с настройками прибора, сохраненными вместе с файлом.

РЕДАКТ.

Функция **РЕДАКТ.** позволяет редактировать имя файла и добавлять **ПРИМЕЧ.ФАЙЛ** (текст) к сохраненным данным.

Для добавления или редактирования текста в сохраненном файле (ИМЯ

ФАЙЛА или ПРИМЕЧ.ФАЙЛ) нажмите клавишу меню МЕМ (), с помощью ручки регулятора выделите желаемый файл и нажмите клавишу С; на экране BondMaster 600 появится текстовый редактор.

Подробнее см. в разделе «Текстовый редактор памяти» на стр. 113.

УСТ.ЭТАЛ (Установка эталонного изображения)

Функция УСТ.ЭТАЛ позволяет во время контроля отображать на экране BondMaster 600 сохраненное изображение, с использованием контрастных цветов. Данное опорное изображение сохраняется на экране до отключения функции **УСТ.ЭТАЛ**.

Для отображения опорного (эталонного) изображения нажмите клавишу

меню MEM ()), с помощью ручки регулятора выделите желаемый файл и нажмите клавишу D. Опорное изображение также может быть создано с помощью текущего экранного изображения. Для этого нажмите клавишу <u>REF</u>

REF SAVE (日) и удерживайте ее в нажатом состоянии до тех пор, пока не услышите звуковой сигнал BondMaster 600.

Для отключения опорного изображения нажмите клавишу меню МЕМ

), затем клавишу Е.

ПРИМЕЧАНИЕ

При активации функции **УСТ.ЭТАЛ** (установить опорное изображение) может появиться сообщение об ошибке, если выбранный режим отображения файла не совместим с текущим РЕЖ.ОТОБР.

Например, сообщение об ошибке появляется при попытке активации опорного изображения **УСТ.ЭТА**Л, настроенного на режим РЧ + ХҮ, тогда как текущий режим отображения установлен на СИГНАЛ РЧ.

удалить

Данная функция стирает выбранный номер программы (сохраненный файл данных).

Чтобы удалить сохраненный файл данных, нажмите клавишу меню МЕМ

(), с помощью ручки регулятора выделите желаемый файл и нажмите клавишу Е.

СОХР. (Сохранить)

Функция **СОХР.** используется для перезаписи существующего файла с текущими настройками и данными.

Чтобы перезаписать файл, выберите его с помощью ручки регулятора и

дважды нажмите клавишу меню MEM (////); при отображении окна ОБЩИЕ нажмите клавишу А и следуйте экранным инструкциям.

5.3.16 Текстовый редактор памяти

Текстовый редактор памяти появляется на экране BondMaster 600 при редактировании имени файла или текстовых полей файла. Данный раздел содержит инструкции по использованию текстового редактора для изменения имени файла или примечания.

ПРИМЕЧАНИЕ

Указанная ниже процедура подразумевает нажатие клавиши меню МЕМ (и отображение меню ДИСПЕТЧЕР ФАЙЛОВ (см. Рис. 5-23 на стр. 114).

Использование текстового редактора

- 1. С помощью ручки регулятора выделите нужный файл.
- 2. Нажмите клавишу меню FULL NEXT () для перехода к полю для редактирования: ИМЯ ФАЙЛА или ПРИМЕЧ.ФАЙЛ.
- 3. Нажмите клавишу С.

Текстовой редактор BondMaster 600 активирован (см. Рис. 5-23 на стр. 114).

Рис. 5-23 Текстовый редактор меню ДИСПЕТЧЕР ФАЙЛОВ и кнопки редактирования

- Используйте ручку регулятора для выбора нужных символов, а клавишу FULL NEXT (→) для принятия символов.
- 5. После редактирования поля ИМЯ ФАЙЛА или ПРИМЕЧ. ФАЙЛ нажмите

, чтобы сохранить изменения, или Для выхода без сохранения изменений.

ПРИМЕЧАНИЕ

По умолчанию, текстовый редактор полностью выделяет исходное имя файла. При последующем нажатии клавиши имя файла по умолчанию или примечание к файлу удаляется. Это также относится к ранее отредактированным полям **ИМЯ ФАЙЛА** или **ПРИМЕЧ.ФАЙЛ**. Для предотвращения полного удаления (сохранения информации) используйте клавиши навигации или специальные кнопки, как указано ниже.

Клавиши навигации или кнопки текстового редактора позволяют модифицировать ошибочно введенные символы или информацию, без необходимости повторного ввода текста (см. Рис. 5-23 на стр. 114, где указаны специальные кнопки редактирования).

Вставка символа с использованием клавиш навигации

- 1. Поверните ручку регулятора, чтобы выделить стрелку вперед () или стрелку назад ().
- 2. С помощью клавиши FULL NEXT () переместите курсор до нужного места.
- Используйте ручку регулятора для выбора нужных символов, а клавишу FULL NEXT (→) для принятия символов.
- 4. После выбора всех нужных символов нажмите 🗸 для принятия, или 🕥 для отмены.

Удаление символа с использованием клавиш навигации

- 1. Поверните ручку регулятора, чтобы выделить стрелку вперед () или стрелку назад ().
- 2. Нажмите клавишу FULL NEXT () для перемещения курсора до нужного места (после символа, который нужно удалить).
- 3. Используйте специальную кнопку () для удаления символа (символов), нажимая на клавишу FULL NEXT ().
- При необходимости, используйте ручку регулятора и клавишу FULL NEXT
 , для добавления новых символов.
- После завершения удаления/добавления символов нажмите √, чтобы принять изменения или ∩, чтобы отменить действия.

Удаление всего текстового поля с помощью клавиш навигации

 Для полного удаления поля (строки) и последующего ввода текста поверните ручку и выберите кнопку «очистить» (CLR), затем нажмите клавишу FULL NEXT ().

5.3.17 Меню Расширенные настройки — Клавиша меню ADV SETUP

Меню расширенных настроек открывает доступ к следующим функциям:

ВЫБР|ПРИЛ. (Выбор приложения), ВСЕ|НАСТРОЙКИ, РЕЖИМ (Режим контроля), САL (только в резонансном режиме и режиме МІА), ЦВЕТ, ПАРОЛЬ, СИСТЕМ. НАСТР., РАЗБЛОК.|ОПЦИИ, ИНФО и СБРОС. Подробнее о СИСТЕМ.НАСТР. см. в разделе «Язык пользовательского интерфейса и десятичный разделитель» на стр. 67.

ВЫБР.ПРИЛ. (Выбор приложения)

Обеспечивает доступ к меню выбора приложений, которое открывается в новом окне (см. Рис. 5-24 на стр. 116).

Для выбора приложения нажмите клавишу меню ADV SETUP (Зду), а затем клавишу А. С помощью ручки регулятора выделите нужное

приложение и нажмите 🗸 . Чтобы покинуть меню, нажмите клавишу

Return (**(**)

Рис. 5-24 Меню ВЫБР.ПРИЛ.

Доступные приложения позволяют быстро конфигурировать BondMaster 600 для выполнения контроля композитных материалов.

ПРИМЕЧАНИЕ

Приложения BondMaster 600 предназначены для быстрой настройки прибора. Тем не менее, выполняйте измерения в соответствии с указанными процедурами.

ВСЕ НАСТРОЙКИ

Меню **ВСЕ НАСТРОЙКИ** предоставляет доступ ко всем функциям BondMaster 600. Приложения размещены на двух разных экранах (меню) для легкой читаемости и удобной навигации (см. Рис. 5-25 на стр. 117).

			— Пара	метры –		
Строка заголовка –		E	ВСЕ НАСТРО	ОЙКИ РС (Р	4)	
	РЕЖИМ	PC (PY)	ЧАСТОТА	10,0kHz	ХҮ СИГНІ	OTP.
	тип пэп		УГОЛ	120,0deg	ΦΟΡΜΑ	прям
	C/H	No Probe	ГУСИЛ	4,0dB	BEPX.	70,0%
	возь, пэп	СРЕДНИЙ	в усил	4,0dB	нижн.	30,0%
	ФНЧ	10Hz	УСИЛРЧ	45,0dB	ЛЕВ.	30,0%
	ЧАСТ.ПОВТ	300			ПРАВ.	70,0%
	DSP MODE	РЧ + XY	Г ПОЛОЖ	50%	ХҮ СИГН2	вык
	ОТОБРАЖ РЧ	н рч	впол	50%	ΦΟΡΜΑ	КРУГ.
	CETKA	МЕЛ			РАДИУС	20,0%
	послсвеч.	вык			ГОРИЗ.	50,0%
	ОЧИСТ.ЭКР	вык			BEPT.	50,0%
	ВРЕМЯ СКАН	5,0Sec				
	ЗАПОЛ.РАЗЕ	в вкл.				
	СТРОБ	ABTO	СИГН. РЧ	пол.	СКАН СИГН	вык
	длина	2000us	BEPX.	70,0%	BEPX.	75,0%
	циклы	10	нижн.	30,0%	нижн.	25,0%
Справочная строка —	НАЖМИТЕ [А]	JUB ILO CTO			Bro JELUIR CI	ТЕЛ

Рис. 5-25 Меню ВСЕ НАСТРОЙКИ (первый из двух экранов)

Для выбора ВСЕ НАСТРОЙКИ нажмите клавишу меню ADV SETUP

(地國政), затем клавишу В. Для навигации по меню или перехода к следующему экрану следуйте инструкциям, указанным в справочной строке внизу экрана. Редактирование настройки: с помощью клавиши FULL NEXT

() выделите желаемую настройку, затем с помощью ручки регулятора задайте желаемое значение.

ПРИМЕЧАНИЕ

BondMaster 600 не требует использования клавиши Enter для сохранения выбранного элемента в меню. Выбранное (и отображенное) значение сохраняется автоматически.

CAL (Калибровка)

Открывает меню калибровки (только в режиме MIA и резонансном режиме).

ЦВЕТ

BondMaster 600 включает выбираемые пользователем цветовые схемы.

Цветовая палитра экрана может быть изменена следующим образом:

- (1) Нажмите клавишу меню ADV SETUP (* 2003).
- (2) Нажмите клавишу Е, затем, с помощью ручки регулятора, выберите цветовую палитру.

ПАРОЛЬ

Функция сброса в приборе может быть заблокирована паролем во избежание риска случайного удаления данных (см. Рис. 5-26 на стр. 118).

ПАРОЛЬ				
ТЕКУЩИЙ ПАРО.	1Ь		ПАРОЛЬ	
МЕНЮ ФАЙЛ	ВЫК		готово	
МЕНЮ СБРОС	ВЫК			
			НОВЫЙ	
			ПАРОЛЬ	
ABCD	EFGH	IJKLM		
NOPQ	RSTU	<u>v w x y z</u>		
0 1 2 3	4 5 6 7	8 9 #		
		CLR 🛛 🖾 🛛 /		
y OK		A CANCLL		
РУЧКА: РЕДАКТИР., КЛАВИША [NEXT]: ПРИНЯТЬ.				

Рис. 5-26 Меню ПАРОЛЬ

Для доступа к функции ПАРОЛЬ выполните следующее:

- 1. Дважды нажмите клавишу меню ADV SETUP (
- 2. Нажмите клавишу А.

Пароль устанавливается следующим образом:

- 1. Нажмите клавишу FULL NEXT (→) для перехода к элементу, который вы хотите заблокировать паролем: МЕНЮ ФАЙЛ или МЕНЮ СБРОС.
- 2. Нажмите клавишу FULL NEXT (→)для перехода к текстовому редактору.
- 3. С помощью ручки регулятора выберите пароль (набор символов). По завершении нажмите клавишу **A**, чтобы ПРИНЯТЬ изменения.
- 4. Нажмите клавишу FULL NEXT (→) для перехода к следующему элементу, на который нужно установить пароль, и повторите шаги 1–3;

или нажмите Для выхода из меню.

РАЗБЛОК. ОПЦИИ

Данная функция обеспечивает доступ к приобретенным опциям прибора, которые вы можете активировать с помощью ввода специального кода (прилагаемого к опции). Сюда включены обновления модели, например B600 на B600M. Полный список возможных обновлений и номеров изделий представлен в «Комплектующие, запасные части и обновления» на стр. 235.

Чтобы разблокировать опции, дважды нажмите клавишу меню ADV SETUP

(地國效), затем клавишу С, и введите код программной опции для обновления.

Для получения более подробной информации обратитесь к региональному представителю компании Olympus. Контактные данные региональных представительств Olympus можно найти на веб-сайте компании по адресу: http://www.olympus-ims.com/ru/contact-us/.

ИНФО

Данная функция отображает конфигурацию прибора и другую важную информацию. При необходимости, данная функция позволяет заводскому персоналу быстрее идентифицировать прибор BondMaster 600 и устранить неполадки. Данная функция принимает во внимание требования пользователя и помогает выполнять обновления прибора. Для доступа к меню ИНФО дважды нажмите клавишу ADV SETUP (

Меню ИНФО обеспечивает доступ к следующим разделам:

БАТ И ТЕМП (температура прибора и батареи, уровень заряда батареи, емкость батареи, расчетная емкость батареи и состояние батареи), ЮР.ИНФО (юридическая информация), ОБНОВЛЕНИЕ (обновление ПО) и ТЕСТЫ (см. Рис. 5-27 на стр. 120).

Рис. 5-27 Меню ИНФО

БАТ И ТЕМП

Отображает следующую информацию: внутренняя температура прибора и батареи, название модели, дата производства, версии аппаратного и программного обеспечения, серийный номер прибора, и т.п.

Для доступа к меню БАТ И ТЕМП сначала дважды нажмите клавишу меню ADV SETUP (^{*}, затем клавишу D, а затем клавишу А. Для выхода из меню нажмите клавишу Назад (**С**).

ЮР.ИНФО

Отображает юридическую информацию и информацию о патентных правах BondMaster 600.

Для доступа к меню ЮР.ИНФО сначала дважды нажмите клавишу

меню ADV SETUP ((), затем клавишу D, а затем клавишу В. Для навигации по меню следуйте инструкциям в справочной строке, расположенной в нижней части экрана. Для выхода из меню нажмите

клавишу Назад (

HOPM.

Отображает нормативную информацию относительно BondMaster 600 (см. Рис. 5-28 на стр. 121). Для доступа к меню **НОРМ.** сначала дважды

нажмите клавишу меню ADV SETUP (), затем клавишу D, а затем

клавишу Е. Для выхода из меню нажмите клавишу Назад (🕻)

Рис. 5-28 Экран НОРМАТИВЫ

ОБНОВЛЕНИЕ

Предоставляет доступ к каналу связи между вашим прибором BondMaster 600 и ПК с установленным программным обеспечением BondMaster PC.

ПРИМЕЧАНИЕ

Программное обеспечение BondMaster PC необходимо для обновления операционного ПО BondMaster 600.

Для доступа к меню ОБНОВЛЕНИЕ дважды нажмите клавишу меню

ADV SETUP (, затем клавишу D и клавишу C; затем следуйте экранным инструкциям. Для выхода из меню нажмите клавишу Назад

тесты

Позволяет оператору выполнить ряд тестов для диагностики неисправности BondMaster 600. Тесты включают: ВИДЕОТЕСТ, ТЕСТ КЛАВИАТУРЫ, ТЕСТ SD-КАРТЫ и ПРОВЕР.LED.

Для доступа к меню **TECTЫ** нажмите клавишу ADV SETUP (затем клавишу D. С помощью ручки регулятора выберите нужный тест и нажмите клавишу A для начала анализа. Для выхода из меню **TECTЫ**

нажмите клавишу Назад (🄇).

 ВИДЕОТЕСТ — Проверка BondMaster 600 путем отображения трех цветных маркировочных полос одинаковой ширины: красной, зеленой и синей. Тест не будет пройден, если одна или более полос будут отсутствовать. Для выхода из меню нажмите клавишу Назад

🜘). Меню ТЕСТЫ вновь появится на экране BondMaster 600.

• **ТЕСТ КЛАВИАТУРЫ** — Проверяет функционирование клавиатуры BondMaster 600 и отображает последнюю нажатую клавишу. Для

остановки теста и выхода из меню нажмите клавишу Назад (). Меню **ТЕСТЫ** вновь появится на экране BondMaster 600.

• **ТЕСТ SD-КАРТЫ** — Проверяет встроенную и съемную (при наличии) карты памяти SD, и отображает результат теста **ДА** или

НЕТ. Для выхода из меню нажмите клавишу Назад (). Меню **ТЕСТЫ** вновь появится на экране BondMaster 600.

ПРИМЕЧАНИЕ

Если съемная карта памяти SD отсутствует во время теста карты SD, на экране отображается ответ **HET** для данного запоминающего устройства.

 ПРОВЕР.LED — Проверяет исправность светодиодов (световых индикаторов) BondMaster 600. Световые индикаторы расположены в верхнем левом углу BondMaster 600 и отмечены цифрами 1, 2 и 3. Во время теста каждый световой индикатор последовательно загорается зеленым, желтым/оранжевым и красным цветом. Отсутствие одного из цветов говорит о неисправной работе светового индикатора. Для

выхода из меню нажмите клавишу Назад ((). Меню **ТЕСТЫ** вновь появится на экране BondMaster 600.

ПРИМЕЧАНИЕ

Световой индикатор заряда батареи не проверяется во время теста **ПРОВЕР.LED** и должен быть проверен вручную. Подробнее о световых индикаторах см. в разделе «Зарядное устройство/адаптер» на стр. 32.

СБРОС

Предоставляет возможность сброса настроек BondMaster 600:

1. Для доступа к меню СБРОС дважды нажмите клавишу ADV SETUP

(地國政), затем клавишу Е и, с помощью ручки регулятора, выберите желаемый тип сброса: параметры, память или основной (см. Рис. 5-29 на стр. 124 и Табл. 6 на стр. 124).

- 2. Для выполнения сброса нажмите клавишу А.
- 3. Для выхода из меню нажмите клавишу Назад (

Табл. 6 Типы сброса

Типы сброса	Описание
Сброс параметров	Сбрасывает только настройки прибора, устанавливая настройки по умолчанию.
Сброс памяти	Стирает все сохраненные программы и экранные снимки.
Полный сброс	Сбрасывает настройки прибора, стирает программы и экранные снимки, восстанавливает настройки по умолчанию.

6. Применение

Содержащаяся в данной главе информация поможет вам получить наилучшие результаты и выбрать оптимальный метод контроля, в самых распространенных приложениях BondMaster 600. Возможно, другие процедуры могли бы привести к аналогичным результатам; здесь же представлены шаги и рекомендации, которые отображают наиболее эффективные методы использования многочисленных функций BondMaster 600. В результате, число шагов и операций сокращено до минимума. Каждая из описанных ниже процедур может использоваться в качестве отправной точки для создания своих собственных процедур на базе BondMaster 600.

ВАЖНО

Оговорка: Данный раздел не заменяет утвержденные письменные инструкции. Процедуры, описанные в данном разделе, представляют методические рекомендации для оптимального использования функций BondMaster 600, упрощенной конфигурации наиболее часто используемых приложений для контроля композитных материалов, самообучения. ВСЕГДА строго следуйте инструкциям изготовителя.

ПРИМЕЧАНИЕ

Большинство преобразователей Olympus для контроля композитных материалов используют технологию PowerLink. Для того, чтобы воспользоваться всеми возможностями дефектоскопа BondMaster 600,

необходимо выбрать приложение в меню **ВЫБОР ПРИЛОЖЕНИЯ** после подключения к прибору преобразователя или другого устройства с технологией PowerLink.

6.1 Наиболее используемые приложения BondMaster 600

В данной главе представлены типовые процедуры для наиболее распространенных приложений.

6.1.1 Выявление отслоений в композиционных материалах (КМ) с сотовым наполнителем, плоской формы — в режиме Р-С РЧ или ИМПУЛЬС

Раздельно-совмещенный режим (Р-С) **РЧ** или **ИМУЛЬС** использует тональный сигнал фиксированной частоты, и поэтому идеально подходит для контроля плоских объектов из КМ с сотовым наполнителем. Выбор частоты (обычно рекомендуемой изготовителем) во многом определяет точность обнаружения.

Описанная в данном разделе процедура рекомендуется для настройки параметров контроля композитных материалов; подобная процедура может быть применена для контроля различных слоистых материалов.

Несмотря на то, что режим Р-С **РЧ** или **ИМПУЛЬС** чаще всего используется для выявления отслоений в КМ с сотовым наполнителем, эта же процедура может использоваться для контроля качества клеевых соединений металлических изделий или выявления значительных расслоений в композитных материалах.

Данная процедура также используется для иллюстрации наиболее важных или новых функций BondMaster 600 и, соответственно, альтернативных методов отображения данных. Целью данной процедуры является выявление расслоений в ближней и дальней зонах.

Используемые в данном приложении материалы представлены на Рис. 6-1 на стр. 127.

Рис. 6-1 Материалы для выявления отслоений обшивки в плоских объектах

В данной процедуре используются следующие материалы:

- Образец из композитного материала с сотовым наполнителем: толщина 25 мм, 6-слойная верхняя общивка из углепластика и 3-слойная нижняя общивка из стеклопластика. Образец имеет расслоения размером 25 мм с каждой стороны. Арт.: NEC-6407 [U8862302]
- Кабель, используемый в режимах МІА и Р-С, длиной 1,83 м. Арт.: SBM-CPM-P11 [U8800058]
- Раздельно-совмещенный ПЭП; расстояние между измерительными наконечниками 14 мм. Арт.: S-PC-P14 [U8800601]

Установка исходной конфигурации BondMaster 600

- 1. Подключите кабель ПЭП к разъему PROBE дефектоскопа BondMaster 600.
- 2. При запросе, нажмите **ПРОДОЛЖ.** (клавиша А) для принятия информации PowerLink.

ПРИМЕЧАНИЕ

При использовании иного преобразователя (не PowerLink), откройте меню ВЫБОР ПРИЛОЖЕНИЯ (клавиша А), предварительно нажав клавишу меню

ADV SETUP (

3. Выберите приложение Отслоен. обш. от мат (плоск.), затем нажмите √ (см. Рис. 6-2 на стр. 128).

Рис. 6-2 Приложение для выявления отслоений в КМ с сотовым наполнителем (плоск.объекты)

Калибровка сигналов

- 1. Нажмите клавишу меню MAIN (¬₩₩₩) и установите **ЧАСТОТУ** (клавиша A) на **11 кГц**, используя ручку регулятора.
- 2. Установите преобразователь на бездефектную часть образца, отрегулируйте усиление, используя клавишу GAIN (**dB**). Убедитесь, что сигнал в режиме РЧ (слева) находится между 1 и 2 вертикальными линиями (см. Рис. 6-3 на стр. 129).

Рис. 6-3 Настройка усиления для получения нужного сигнала

- 3. Установите преобразователь на бездефектную часть образца и нажмите клавишу CAL NULL (.).
- 4. Просканируйте расслоения ближней и дальней зоны; убедитесь, что оба дефекта обнаружены (см. Рис. 6-4 на стр. 129).

Рис. 6-4 Обнаружение расслоений ближней и дальней зоны

Настройка стробов

ПРИМЕЧАНИЕ

По умолчанию, **СТРОБ** установлен на **АВТО**. В режиме **АВТО** BondMaster 600 автоматически выявляет максимальный сигнал в области отображения РЧ и использует его для отображения плавающей точки ХҮ.

5. При желании, вручную установите строб на нужное положение путем нажатия **СТРОБ** (клавиша D) и использования ручки регулятора.

Рекомендуемое положение СТРОБа предполагает максимальный сигнал первого отражения.

Рекомендуемое положение СТРОБа часто находится слева от первого самого сильного сигнала (см. Рис. 6-5 на стр. 130).

Рис. 6-5 Рекомендуемое положение строба

Режим отображения ИМПУЛЬС

ПРИМЕЧАНИЕ

В режиме ИМПУЛЬС фильтр огибающей применяется к сигналу РЧ. (Термин «ИМПУЛЬС» происходит из более ранних версий BondMaster).

 При желании, установите ОТОБРАЖ. РЧ (клавиша Е) на ИМПУЛЬС (см. Рис. 6-6 на стр. 131). Однако, предпочтительнее использовать режим ОТОБРАЖ РЧ, т.к. он позволяет быстро интерпретировать колебания каждого сигнала.

Рис. 6-6 Отображение ИМПУЛЬС

COBET

В режиме **ИМПУЛЬС** можно увеличить **ДЛИНУ** (клавиша С) для расширения максимума сигнала на несколько делений.

Для оптимизации идентификации расслоений ближней и дальней зоны выполните следующее:

- 1. Нажмите клавишу RUN () для отображения плавающей точки XY.
- 2. Установите преобразователь на бездефектную часть образца и нажмите клавишу CAL NULL (()).
- 3. Просканируйте расслоения ближней и дальней зон; в ходе сканирования дефектов нажмите клавишу FREEZE (**) [см. Рис. 6-7 на стр. 132].

Рис. 6-7 Сканирование дефектов

4. Находясь в меню **MAIN**, нажмите **УГОЛ** (клавиша E) и настройте угол сигнала так, чтобы расслоение дальней зоны спустилось вниз, а расслоение ближней зоны поднялось вверх (см. Рис. 6-8 на стр. 132).

Рис. 6-8 Настройка угла сигнала от расслоения

 При необходимости, настройте Г УСИЛ (клавиша С) и В УСИЛ (клавиша D) для четкого различия между расслоениями ближней и дальней зоны (см. Рис. 6-9 на стр. 133).

Рис. 6-9 Настройка ГУСИЛ и В УСИЛ

- 6. Повторно нажмите клавишу FREEZE (*****) для перезапуска приложения.
- 7. Нажмите клавишу FULL NEXT (→) для переключения в полноэкранный режим.

В режиме реального времени отображаются амплитуда (А) и фаза (°) плавающей точки ХҮ (см. Рис. 6-10 на стр. 133). Подробнее о модификации показаний, отображаемых в режиме реального времени см. в «Отображение значений в режиме реального времени» на стр. 62.

Рис. 6-10 Амплитуда (А) и фаза (°) плавающей точки ХҮ

Новый режим отображения СКАН и другие режимы отображения (RUN)

8. Для быстрого переключения между разными способами отображения сигнала во время контроля (в нормальном или полноэкранном режиме),

используйте клавишу RUN (上).

Доступные режимы отображения (RUN) показаны на Рис. 6-11 на стр. 134 – Рис. 6-15 на стр. 136.

Рис. 6-11 ОТОБР. 1 — РЧ сигнал

Рис. 6-12 ОТОБР. 2 – РЧ + ХҮ (по умолчанию)

Рис. 6-13 ОТОБР. 3 – ПЛАВ. ТЧК ХҮ

Рис. 6-14 ОТОБР. 4 — XY + СКАН

Рис. 6-15 ОТОБР. 5 – СКАН

COBET

Для четкой визуализации фазы в режиме отображения SCAN, нажмите клавишу NULL, удерживая преобразователь в воздухе.

Точная настройка параметров прибора

- В зависимости от требований контроля, задайте параметры сигнализации, звуковой сигнализатор или внешний звуковой сигнализатор. Подробнее о сигнализации см. в «Сигнализации, разъемы для подключения и оперативная память» на стр. 231.
- 2. В зависимости от требований контроля, измените показания, отображаемые в режиме реального времени.

По умолчанию, в режиме реального времени отображаются значения амплитуды и фазы сигнала ХҮ. Подробнее о модификации показаний, отображаемых в режиме реального времени см. в «Отображение значений в режиме реального времени» на стр. 62.

Список всех параметров показан на Рис. 6-16 на стр. 137.

	E	ВСЕ НАСТРО	ЙКИ РС (Р	Ч)			BCE HAC	ТРОЙКИ РС (РЧ)		
РЕЖИМ	РС (РЧ)	ЧАСТОТА	11.0kHz	ХҮ СИГНІ	OTP.					
тип пэп		УГОЛ	69.0deg	ΦΟΡΜΑ	прям					
C/H	No Probe	ГУСИЛ	0.0dB	BEPX.	70.0%		ЗВУК.СИГН	ВЫК	ТИП ПОК1	A
возб. пэп	СРЕДНИЙ	<u>в усил</u>	8.0dB	нижн.	30.0%		выдержка	0.0sec	пол покт	НИЖ. ЛЕВ.
ФНЧ	10Hz	УСИЛРЧ	45.0dB	ЛЕВ.	30.0%				ТИП ПОК2	Фаза
YACT. NOBT	300			ПРАВ.	70.0%		ВНЕШ.СИГН	ВКЛ.	пол пок2	НИЖ.ПРАВ.
DSP MODE	CKAH	Г ПОЛОЖ	50%	ХҮ СИГН2	ВЫК					
ОТОБРАЖ РЧ	импульс	в пол	50%	ΦΟΡΜΑ	КРУГ.		РЕЖ. ЗАХВ	МГНОВЕН.		
CETKA	МЕЛ			РАДИУС	20.0%		ЗАДЕРЖ	10.0sec	А.ВЫХ.ПИТ	ВЫК
послсвеч.	вык			ГОРИЗ.	50.0%					
ОЧИСТ.ЭКР	вык			BEPT.	50.0%					
ВРЕМЯ СКАН	5.0Sec									
ЗАПОЛ.РАЗВ	ВКЛ.									
CTP05	ABTO	СИГН. РЧ	OTP.	СКАН СИГН	вык					
длина	2000us	BEPX.	70.0%	BEPX.	75.0%					
циклы	10	нижн.	30.0%	нижн.	25.0%					
НАЖМИТЕ [А]		ОЛБЦА, [B] ДЛЯ	1 2го. ICI ЛЛЯ	3го. [E] ЛЛЯ СІ	ТЕЛ.	НАЖМ	1. [A] ЛЛЯ 1-ГО СТ	ОЛБЦА, [В] Ј	лля 2-го. јеј для пред	1.

Рис. 6-16 Список всех параметров

6.1.2 Выявление отслоений обшивки от сотового заполнителя в объектах конусной формы – в Р-С режиме Развертки по частоте

Раздельно-совмещенный режим (Р-С) развертки идеально подходит для контроля изделий различной формы (в т.ч. конусной) из КМ с сотовым наполнителем. Данная методика оптимальна для контроля отслоений обшивки, особенно в случае сотовых конструкций с алюминиевым заполнителем.

В режиме Р-С Развертки расслоения ближней зоны выявляются лучше, чем расслоения дальней зоны. Режим Р-С РАЗВ. также используется для контроля объектов плоской формы, даже если режимы РЧ и ИМПУЛЬС являются более предпочтительными в данном случае, особенно для больших конструкций.

Здесь описывается процедура настройки контроля в режиме P-C PA3B., с использованием алюминиевого образца. Выбор диапазона частоты должен осуществляться с учетом рекомендаций изготовителя.

Используемые в данном приложении материалы представлены на Рис. 6-17 на стр. 138.

Рис. 6-17 Материалы для выявления отслоений обшивки в объектах конусной формы

В данной процедуре используются следующие материалы:

- Образец из алюминиевого композитного материала с сотовым наполнителем: толщина 25 мм, верхняя и нижняя алюминиевые обшивки толщиной 1 мм. С каждой стороны образца имеется расслоение 25 мм. Арт.: NEC-6312 [U8860498]
- Кабель, используемый в режимах МІА и Р-С, длиной 1,83 м. Арт.: SBM-CPM-P11 [U8800058]
- Раздельно-совмещенный ПЭП; расстояние между измерительными наконечниками 14 мм. Арт.: S-PC-P14 [U8800601]

Установка исходной конфигурации BondMaster 600

- 1. Подключите кабель преобразователя к разъему PROBE дефектоскопа BondMaster 600.
- 2. При запросе, нажмите **ПРОДОЛЖ.** (клавиша А) для принятия информации PowerLink.

В случае использования иного преобразователя (не PowerLink), откройте меню ВЫБОР ПРИЛОЖЕНИЯ (клавиша A), предварительно нажав клавишу меню

ADV SETUP (

 Выберите приложение Отслоен. обш. от мат (конус.), затем нажмите √ (см. Рис. 6-18 на стр. 139).

Рис. 6-18 Приложение для выявления отслоений в КМ с сотовым наполнителем (конус.объекты)

Калибровка сигналов

- 1. Нажмите клавишу меню MAIN (¬₩₩₩), затем с помощью ручки регулятора установите **НАЧ.ЧАСТ.** (клавиша С) на **10 кГц**, а **КОНЕЧ.ЧАСТ.** (клавиша D) на **40 кГц**.
- 2. Поместите преобразователь на бездефектную часть образца, нажмите клавишу GAIN (**dB**) и с помощью ручки регулятора настройте усиление так, чтобы изображение развертки находилось между двумя делениями внутри квадрата сигнализации (см. Рис. 6-19 на стр. 140).

- 3. Удерживая преобразователь на бездефектной части образца, нажмите клавишу CAL NULL (()).
- 4. Просканируйте зону дефектов и убедитесь, что сигнал выходит за пределы квадрата сигнализации. При необходимости, настройте значение **УСИЛ**.
- 5. Нажмите клавишу FULL NEXT (→) для включения полноэкранного режима отображения, снова просканируйте область дефектов (см. Рис. 6-20 на стр. 140).

Рис. 6-20 Полноэкранный режим отображения

Точная настройка параметров прибора

- В зависимости от требований контроля, задайте параметры сигнализации, звуковой сигнализатор или внешний звуковой сигнализатор. Подробнее о сигнализации см. в «Сигнализации, разъемы для подключения и оперативная память» на стр. 231.
- 2. В зависимости от требований контроля, измените показания, отображаемые в режиме реального времени.

По умолчанию, в режиме реального времени отображается полная амплитуда сигнала ХҮ. О том, как отключить показания в режиме реального времени см. в разделе «Отображение значений в режиме реального времени» на стр. 62.

Список всех параметров показан на Рис. 6-21 на стр. 141.

Рис. 6-21 Список всех параметров

6.1.3 Выявление мелких отслоений в КМ с сотовым наполнителем — Режим МІА (Анализ механического импеданса)

Преобразователи МІА небольшого диаметра, в сочетании с расширенным диапазоном частот BondMaster 600, идеально подходят для обнаружения мелких дефектов в КМ с сотовым наполнителем. Данная процедура объясняет, как использовать режим контроля МІА для выявления дефектов в конструкциях из композиционных материалов с сотовым наполнителем, с использованием рекомендуемой частоты. Процедура определения оптимальной частоты контроля КМ с сотовым наполнителем — Режим МІА» на стр. 173.

Используемые в данном приложении материалы представлены на Рис. 6-22 на стр. 142.

Рис. 6-22 Материалы для выявления мелких отслоений с использованием режима MIA

В данной процедуре используются следующие материалы:

- Образец из композиционного материала с сотовым наполнителем: толщина 25 мм, 3- и 6-слойная верхняя обшивка из углепластика, 3-слойная нижняя обшивка из стеклопластика. Имеет расслоения размером 13 мм и 25 мм с каждой стороны. Арт.: NEC-6433 [U8620490].
- Кабель, используемый в режимах МІА и Р-С, длиной 1,83 м. Арт.: SBM-CPM-P11 [U8800058]
- Г-образный преобразователь МІА, наконечник 13 мм. Арт.: S-MP-3 [U8010011]

Установка исходной конфигурации BondMaster 600

- 1. Подключите кабель преобразователя к разъему PROBE дефектоскопа BondMaster 600.
- 2. При запросе, нажмите **ПРОДОЛЖ.** (клавиша А) для принятия информации PowerLink.

3. Выберите приложение **Мелкие отслоен.**, затем нажмите √ (см. Рис. 6-23 на стр. 143).

Рис. 6-23 Приложение для выявления мелких отслоений и отремонтированных участков

Калибровка сигналов

- 1. Нажмите клавишу меню MAIN (¬₩₩₩) и с помощью ручки регулятора установите **ЧАСТ.** (клавиша А) на **10 кГц.**
- 2. Установите преобразователь на бездефектную часть образца (со стороны углепластика) и нажмите клавишу CAL NULL (
- Медленно просканируйте зону отслоения (13 мм), затем нажмите клавишу FREEZE (*) [см. Рис. 6-24 на стр. 144].

Рис. 6-24 Сигнал от дефекта (отслоения)

4. Нажмите **УГОЛ** (клавиша Е) и настройте угол сигнала так, чтобы сигнал был направлен вверх, в сторону квадрата сигнализации (см. Рис. 6-25 на стр. 144).

Рис. 6-25 Угол сигнала направлен вверх

5. Нажмите клавишу GAIN (**dB**) и настройте амплитуду сигнала так, чтобы сигнал от дефекта (отслоения) входил в зону квадрата сигнализации и находился примерно на 5 делений выше нулевого положения (перекрестия) [см. Рис. 6-26 на стр. 145].

Рис. 6-26 Амплитуда сигнала входит в квадратную зону сигнализации

- 6. Нажмите клавишу FREEZE (**), чтобы разморозить экран, затем нажмите клавишу FULL NEXT (-) для включения полноэкранного режима.
- 7. Снова просканируйте зону отслоения (13 мм) [см. Рис. 6-27 на стр. 145].

Рис. 6-27 Повторное сканирование зоны отслоения

Точная настройка параметров прибора

1. В зависимости от требований контроля, задайте параметры сигнализации, звуковой сигнализатор или внешний звуковой сигнализатор. Подробнее о

сигнализации см. в «Сигнализации, разъемы для подключения и оперативная память» на стр. 231.

2. В зависимости от требований контроля, измените показания, отображаемые в режиме реального времени.

По умолчанию, в режиме реального времени отображаются значения амплитуды и фазы сигнала ХҮ. Подробнее о модификации показаний, отображаемых в режиме реального времени см. в «Отображение значений в режиме реального времени» на стр. 62.

ВСЕ НАСТРОЙКИ ИМП & РЕЗ ВСЕ НАСТРОЙКИ ИМП & РЕЗ ЧАСТОТА РЕЖИМ 10.0kHz MIA ХҮ СИГНІ угол 220.0deg ΦΟΡΜΑ прям гусил 55.0dB BEPX. 100.0% ВУК. СИГН вык тип покт нижн вусил 55.0dB 50.0% ВЫДЕРЖКА 0.0sec НИЖ ЛЕВ 30Hz ЛEB. 0.0% ТИП ПОК2 ПРАВ. 100.0% внеш.сигн ПОЛ ПОК2 НИЖ. ПРАВ. вык DSP MODE XY JET.TYK г полож 50% РЕЖ.ЗАХВ МГНОВЕН. CETKA МЕЛ в пол А.ВЫХ.ПИТ послсвеч. ЗАДЕРЖ 10.0sec вык вык ОЧИСТ. ЭКР вык ЗАПОЛ.РАЗВ ВКЛ. СКАН СИГН вык ХҮ СИГН2 вык BPEMR CKAH 5.0Sec КАНАЛ АМПЛИТУДА ΦΟΡΜΑ КРУГ. РАДИУС РЕЖ ТЧК BEPX. 75.0% 20.0% нижн. 25.0% ГОРИЗ. 50.0% 50.0% BEPT. КАЖМИТЕ [A] ДЛЯ 1го СТОЛБЦА, [B] ДЛЯ 2го, [C] ДЛЯ 3го, [E] ДЛЯ СЛЕД ЖМ. [А] ДЛЯ 1-ГО СТОЛБЦА. [В] ДЛЯ 2-ГО. [Е] ДЛЯ ПРЕД

Список всех параметров показан на Рис. 6-28 на стр. 146.

Рис. 6-28 Список всех параметров

6.1.4 Выявление отремонтированных участков (заливки) в КМ с сотовым наполнителем — Режим МІА

Поскольку режим МІА используется для измерения механического импеданса (или сопротивление) материалов, он отображает высокий контраст между отремонтированным участком (жесткий раствор) и отслоением (слабое механическое сопротивление). Контрастная характеристика позволяет использовать режим МІА для идентификации отремонтированных участков в КМ с сотовым наполнителем.

Используемые в данном приложении материалы представлены на Рис. 6-29 на стр. 147.

Рис. 6-29 Материалы для выявления отремонтированных участков с использованием режима MIA

В данной процедуре используются следующие материалы:

- Образец из композиционного материала с сотовым наполнителем: толщина 25 мм, 3- и 6-слойная верхняя обшивка из утлепластика, 3-слойная нижняя обшивка из стеклопластика. Образец имеет расслоения размером 13 мм и 25 мм с каждой стороны. Арт.: NEC-6433 [U8620490].
- Кабель, используемый в режимах МІА и Р-С, длиной 1,83 м. Арт.: SBM-CPM-P11 [U8800058]
- Г-образный преобразователь МІА, наконечник 13 мм. Арт.: S-MP-3 [U8010011]

Установка исходной конфигурации BondMaster 600

- 1. Подключите кабель преобразователя к разъему PROBE дефектоскопа BondMaster 600.
- 2. При запросе, нажмите **ПРОДОЛЖ.** (клавиша А) для принятия информации PowerLink.

ПРИМЕЧАНИЕ

В случае использования иного преобразователя (не PowerLink), откройте меню ВЫБОР ПРИЛОЖЕНИЯ (клавиша А), предварительно нажав клавишу меню

ADV SETUP (

3. Выберите приложение **Мелкие отслоен.**, затем нажмите √ (см. Рис. 6-30 на стр. 148).

Рис. 6-30 Приложение для выявления мелких отслоений и отремонтированных участков

Калибровка сигналов

- 1. Нажмите клавишу меню DISP/DOTS () и установите **ПОЛОЖ.** (клавиша С) на **ЦЕНТР**.
- 2. Нажмите клавишу меню ALARM () и установите **ХҮ СИГН1** (клавиша В) **ВЫКЛ**.
- 3. Установите преобразователь на бездефектную часть образца и нажмите клавищу CAL NULL (
- 4. Поднимите преобразователь для отслеживания движения точки; если точка исчезает с экрана, нажмите клавишу GAIN (**dB**) и с помощью ручки

регулятора настройте положение точки так, чтобы она оставалась на экране (см. Рис. 6-31 на стр. 149).

Рис. 6-31 Настройка положения точки

- 5. Установите преобразователь на бездефектную часть образца и нажмите клавищу CAL NULL (
- 6. Медленно просканируйте зону дефекта (отслоения), затем нажмите клавишу FREEZE (**) [см. Рис. 6-32 на стр. 149].

Рис. 6-32 Сканирование зоны отслоения и отремонтированной зоны

7. Нажмите клавишу меню MAIN (¬₩₩₩), затем УГОЛ (клавиша Е) и настройте угол сигнала так, чтобы сигнал от дефекта был направлен вверх на 90° (см. Рис. 6-33 на стр. 150).

Рис. 6-33 Настройка угла сигнала вверх

 Нажмите клавишу GAIN (**dB**) и настройте амплитуду сигнала так, чтобы сигнал от дефекта (отслоения) растянулся на 4 деления от нулевого положения (перекрестия) [см. Рис. 6-34 на стр. 150].

Рис. 6-34 Настройка амплитуды сигнала

9. Нажмите клавишу FREEZE (🗱) для разморозки экрана, нажмите клавишу

FULL NEXT () для перехода в полноэкранный режим, снова медленно просканируйте зону дефекта и отремонтированный участок (см. Рис. 6-35 на стр. 151).

Рис. 6-35 Повторное сканирование зоны отслоения и отремонтированного участка

Точная настройка параметров прибора

- В зависимости от требований контроля, задайте параметры сигнализации, звуковой сигнализатор или внешний звуковой сигнализатор. Подробнее о сигнализации см. в «Сигнализации, разъемы для подключения и оперативная память» на стр. 231.
- 2. В зависимости от требований контроля, измените показания, отображаемые в режиме реального времени.

По умолчанию, в режиме реального времени отображаются значения амплитуды и фазы сигнала ХҮ. Подробнее о модификации показаний, отображаемых в режиме реального времени см. в «Отображение значений в режиме реального времени» на стр. 62.

Список всех параметров показан на Рис. 6-36 на стр. 152.

	BC	Е НАСТРОЙ	КИ ИМП & Г	PE3			BCE HACT	РОЙКИ И	МП & РЕЗ	
РЕЖИМ	MIA	ЧАСТОТА	10.0kHz	ХҮ СИГН1	вык					
тип пэп		угол	213.0deg	ΦΟΡΜΑ	прям					
C/H	No Probe	ГУСИЛ	64.0dB	BEPX.	100.0%	ЗВУК.СИГН	ВЫК		тип пок1	A
возь. пэп	СРЕДНИЙ	В УСИЛ	64.0dB	нижн.	50.0%	выдержка	0.0sec		пол покт	ниж.л
ФНЧ	30Hz			ЛЕВ.	0.0%				тип пок2	Фаза
				ΠΡΑΒ.	100.0%	ВНЕШ СИГН	BEIK		пол пок2	ниж пр
DSP MODE	ХҮ ЛЕТ.ТЧК	гполож	50%							
CETKA	МЕЛ	впол	50%			РЕЖ. ЗАХВ	МГНОВЕН.			
послсвеч.	вык					ЗАДЕРЖ	10.0sec		А.ВЫХ.ПИТ	вык
ОЧИСТ.ЭКР	вык									
ЗАПОЛ.РАЗІ	з вкл.	СКАН СИГН	ВЫК	ХҮ СИГН2	вык					
ВРЕМЯ СКАН	5.0Sec	КАНАЛ	АМПЛИТУДА	ΦΟΡΜΑ	КРУГ.					
РЕЖ ТЧК	XY	BEPX.	75.0%	РАДИУС	20.0%					
		нижн.	25.0%	ГОРИЗ.	50.0%					
				BEPT.	50.0%					
	100 1 OTO			2 [5] 886.0						

Рис. 6-36 Список всех параметров

6.1.5 Контроль качества клеевых соединений металлических изделий — Резонансный режим

Резонансный режим является наиболее предпочтительным для контроля клеевых соединений металлов. Малый диаметр резонансных преобразователей обеспечивает легкий доступ к местам крепления. В резонансном режиме необходимо использовать контактную жидкость с низкой степенью вязкости. При сканировании, плавно перемещайте преобразователь, слегка нажимая на него; контактная жидкость должна оставаться между объектом контроля и преобразователем. Здесь представлена процедура контроля клеевых соединений металлов с использованием резонансного режима, в виде простого теста «годен/не годен».

Используемые в данном приложении материалы представлены на Рис. 6-37 на стр. 153.

Рис. 6-37 Материалы для выявления отслоений в металлах — Резонансный режим

В данной процедуре используются следующие материалы:

- Стандартный металлический образец с отслоениями; три алюминиевых слоя 0,5 мм. Арт.: NEC-6384 [U8861988]
- Контактная жидкость низкой вязкости, бутылка 118 мл. Арт.: 3308193 [U8770328]
- Кабель для резонансного ПЭП, длиной 3,35 м. Арт.: SBM-CR-P6 [U8800059]
- Резонансный преобразователь 250 кГц. Арт.: S-PR-5 [U8010010]

Установка исходной конфигурации BondMaster 600

- 1. Подключите кабель преобразователя к разъему PROBE дефектоскопа BondMaster 600.
- 2. При запросе, нажмите **ПРОДОЛЖ.** (клавиша А) для принятия информации PowerLink.

ПРИМЕЧАНИЕ

В случае использования иного преобразователя (не PowerLink), откройте меню ВЫБОР ПРИЛОЖЕНИЯ (клавиша А), предварительно нажав клавишу меню

ADV SETUP (

3. Выберите приложение **Отслоен. металл**, затем нажмите √ (см. Рис. 6-38 на стр. 154).

Рис. 6-38 Приложение для контроля качества клеевых соединений металлов

- 4. Если меню калибровки не открывается автоматически, нажмите и удерживайте клавишу CAL NULL (()).
- Держите преобразователь в воздухе. BondMaster 600 должен автоматически выбрать оптимальную частоту для преобразователя. В случае сомнения, нажмите CAL (клавиша C) или отредактируйте значение ЧАСТ. (клавиша D) с помощью ручки регулятора.
- 6. Нажмите ГОТОВО (клавиша Е) [см. Рис. 6-39 на стр. 155].

Рис. 6-39 Экран калибровки САL

Калибровка сигналов

- 1. Положите слой пенопласта под образец. Это обеспечит стабильность показаний.
- 2. Нанесите большое количество жидкости на образец.
- 3. Установите преобразователь на бездефектную часть образца и нажмите клавишу CAL NULL ((;)).
- 4. Медленно переместите преобразователь в зону первого дефекта (отлоения) и удерживайте его в данном положении.
- 5. Дважды нажмите клавишу меню DISP/DOTS () для отображения экрана ТОЧКИ.
- 6. Нажмите **СОХР. СЛЕД.** (клавиша А) для записи первой точки (см. Рис. 6-40 на стр. 156).

Рис. 6-40 Регистрация первой точки

 Медленно переместите преобразователь ко второму дефекту (отслоению) и нажмите СОХР. СЛЕД. (клавиша А) для регистрации второй точки (см. Рис. 6-41 на стр. 156).

Рис. 6-41 Регистрация второй точки

- 8. Уберите преобразователь и нажмите клавишу ERASE (
- 9. Нажмите клавишу меню MAIN (¬₩₩₩) для отображения экрана ГЛАВ. МЕНЮ.

- 10. При необходимости, настройте **УГО**Л (клавиша E), так чтобы точки переместились в область отображения XY.
- 11. Настройте **УСИЛ** (клавиша В) для установки верхней точки на 90 % высоты экрана (см. Рис. 6-42 на стр. 157).

Рис. 6-42 Настройка УСИЛ для установки положения верхней точки

- 12. Дважды нажмите клавишу меню ALARM (Э) для отображения экрана **ХҮ СИГН 1**, затем установите **НИЖН.** (клавиша C) на **30** %.
- 13. Нажмите клавишу FULL NEXT () для перехода в полноэкранный режим, затем медленно просканируйте зону дефектов; убедитесь, что точки соответствуют сигналу (см. Рис. 6-43 на стр. 158).

Рис. 6-43 Повторное сканирование зоны дефектов

Точная настройка параметров прибора

- В зависимости от требований контроля, задайте параметры сигнализации, звуковой сигнализатор или внешний звуковой сигнализатор. Подробнее о сигнализации см. в «Сигнализации, разъемы для подключения и оперативная память» на стр. 231.
- 2. В зависимости от требований контроля, измените показания, отображаемые в режиме реального времени.

По умолчанию, в режиме реального времени отображаются значения амплитуды и фазы сигнала ХҮ. Подробнее о модификации показаний, отображаемых в режиме реального времени см. в «Отображение значений в режиме реального времени» на стр. 62.

Список всех параметров показан на Рис. 6-44 на стр. 159.

РЕЖИМ РЕЗОН <u>ЧАСТОТА</u> 255.9kHz XY СИГН1 ПОЛ. ТИП ПЭП <u>УГОЛ</u> 90.0deg ФОРМА ПРЯМ ВОЗБ. ПЭП СРЕдНИЙ В УСИЛ 30.0dB ВЕРХ. 100.0% ФНЧ 10Hz 30.0dB ПЕВ. 0.0% ПРЯМ. ВЫДЕРЖКА 0.0sec ПОЛПОК1 НИЖ.ПРАВ. DSP MODE XY ЛЕТ. ТЧК Г ПОЛОЖ 50% В ВНЕШ.СИГН ВЫК ПОЛПОК2 НИЖ.ПРАВ. CETKA МЕЛ В ПОЛ 20% К РЕЖ.ЗАХВ МГНОВЕН. ЗАДЕРЖ 3АДЕРЖ 10.0sec А ВЫХ.ПИТ ВЫК		BCE	НАСТРО	ЙКИ ИМП & Р	PE3		BCE HACTP	ОЙКИ ИМІ	П & PE3			
ТИП ПЗП УГОЛ 90.0deg ФОРМА ПРЯМ С/Н No Probe ГУСИЛ 30.0dB ВЕРХ. 100.0% В03Б. ПЗП СРЕДНИЙ ВУСИЛ 30.0dB НИЖН. 50.0% ФНЧ 10Hz ТИП ПОК1 НИЖ. 50.0% ПРАВ. 100.0% DSP MODE ХУ ЛЕТ. ТЧК Г ПОЛОЖ 50% ВНЕШ.СИГН ВЫК ПОЛ ПОК1 НИЖ. ПРАВ. DSP MODE ХУ ЛЕТ. ТЧК Г ПОЛОЖ 50% В ВНЕШ.СИГН ВЫК ПОЛ ПОК2 НИЖ. ПРАВ. ОЦИФСТ ЗИР В ПОЛ 20% К РЕЖ. ЗАХВ МГНОВЕН. ЗАДЕРЖ 10.0 sec А ВЫХ. ПИТ ВЫК	РЕЖИМ РЕ	E30H	ЧАСТОТА	255.9kHz	ХҮ СИГН1	пол.						
С/Н No Probe ГУСИЛ 30.0dB ВЕРХ. 100.0% ЗВУК.СИГН ВЫК ТИП ПОК1 А В03Б. ПЭП СРЕДНИЙ ВУСИЛ 30.0dB ВЕРХ. 100.0% ВЫДЕРЖКА 0.0sec ПОЛ ПОК1 НИЖ.ПЕВ. ФНЧ 10Hz ЛВВ 0.0% ПРАВ. 100.0% ВНЕШ.СИГН ВЫК ПОЛ ПОК1 НИЖ.ПЕВ. ОБР МОДЕ XY ЛЕТ.ТЧК СЕТКА Г ПОЛОЖ 50% ВПОЛ 20% РЕЖ.ЗАХВ МГНОВЕН. ОЦИФСТ 20% ВЫК 20% А ВЫК. ЗАДЕРЖ 10.0sec А ВЫХ.ПИТ	гип пэп		УГОЛ	90.0deg	ΦΟΡΜΑ	прям						
ВОЗБ. ПЭП СРЕДНИЙ фНЧ В УСИЛ 30.0dB НИЖН. 50.0% Выјдержка 0.0sec ПОЛ ПОК1 НИЖ.ЛЕВ. ФНЧ 10Hz 0.0% ПРАВ. 0.0% Выјдержка 0.0sec ТИП ПОК2 Фаза DSP MODE ХУ ЛЕТ. ТЧК СЕТКА Г ПОЛОЖ 50% ВНЕШ. СИГН ВыК ПОЛ ПОК2 НИЖ. ПРАВ. ОСОТОВЕЧ. В ПОЛ 20% РЕЖ. ЗАХВ МГНОВЕН. ЗАДЕРЖ 10.0sec А ВЫХ. ПИТ ВЫК	C/H No F	Probe	ГУСИЛ	30.0dB	BEPX.	100.0%	ЗВУК.СИГН	вык	ТИ	п пок 1	A	1
ФНЧ 10Hz ЛЕВ. 0.0% ТИП ПОК2 Феза ПРАВ. 100.0% ВНЕШ.СИГН ВЫК ПОЛ ПОК2 НИЖ.ПРАВ. DSP MODE XY ЛЕТ.ТЧК Г ПОЛОЖ 50% ВНЕШ.СИГН ВЫК ПОЛ ПОК2 НИЖ.ПРАВ. DSP MODE XY ЛЕТ.ТЧК Г ПОЛОЖ 50% В В В DSP MODE XY ЛЕТ.ТЧК Г ПОЛОЖ 50% В В В DSP MODE B ПОЛ 20% В В В В ОИНОТ ЗИР ВЫК О.0sec A ВЫХ.ПИТ ВЫК	303Б. ПЭП СРЕ,	ЕДНИЙ 🛛	В УСИЛ	30.0dB	нижн.	50.0%	выдержка	0.0sec	пс	л покт	НИЖ. ЛЕВ.	i i
ПРАВ. 100.0% ВНЕШ.СИГН ВЫК ПОЛ ПОК2 НИЖ.ПРАВ. DSP MODE XY ЛЕТ.ТЧК Г ПОЛОЖ 50% ВПОЛ 20% РЕЖ.ЗАХВ МГНОВЕН. ПОСЛОВЕЧ. ВЫК ОЛИСТ 20% ЗАДЕРЖ 10.0sec А.ВЫХ.ПИТ ВЫК	р нч 10	10Hz			ЛЕВ.	0.0%		,	ТИ	п пок2	Фаза	í –
DSP MODE XY ЛЕТ. ТЧК Г ПОЛОЖ 50% РЕЖ. ЗАХВ ИНОНТОКЕ ИНИНТОКЕ ИНИНТОКЕ <					ПРАВ.	100.0%		BUK	ПО		НИЖ ПРАВ	í
DSP MODE XY ЛЕТ.ТЧК Г ПОЛОЖ 50% СЕТКА МЕЛ В ПОЛ 20% ПОСЛСВЕЧ. ВЫК ОКЛИСТ 240 РЫК ОКЛИСТ 240 РЫК							BIILEB.OM I	bbiit		WITHOR L	TRUNCIN AD.	1
СЕТКА МЕЛ В ПОЛ 20% РРЖ. ЗАХВ МІ НОВЕН. ПОСЛОВЕЧ. ВЫК ОЦИСТ 20% ЗАДЕРЖ 10.0sec А.ВЫХ.ПИТ ВЫК	DSP MODE XY ЛЕ	ІЕТ.ТЧК	г полож	50%								
ПОСЛОВЕЧ. ВЫК ЗАДЕРЖ 10.0sec А.ВЫХ.ПИТ ВЫК	СЕТКА М	МЕЛ	впол	20%			РЕЖ. ЗАХВ	MI HOBEH.				
	10СЛСВЕЧ. В	вык					ЗАДЕРЖ	10.0sec	A.6	зых.пит	вык	
OVICT.SRP BDIK	очист.экр в	вык										
ЗАПОЛ.РАЗВ ВКЛ. СКАН СИГН ВЫК ХҮСИГН2 ВЫК	ЗАПОЛ.РАЗВ ВІ	вкл.	СКАН СИГН	і вык	ХҮ СИГН2	вык						
ВРЕМЯ СКАН 5.0Sec КАНАЛ АМПЛИТУДА ФОРМА КРУГ.	ВРЕМЯ СКАН 5.0	.0Sec	КАНАЛ	АМПЛИТУДА	ΦΟΡΜΑ	КРУГ.						
ВЕРХ. 75.0% РАДИУС 20.0%			BEPX.	75.0%	РАДИУС	20.0%						
НИЖН. 25.0% ГОРИЗ. 50.0%		ĺ	нижн.	25.0%	ГОРИЗ.	50.0%						
BEPT. 70.0%					BEPT.	70.0%						

Рис. 6-44 Список всех параметров

6.1.6 Выявление расслоений в многослойных композиционных материалах — Резонансный режим

Резонансный режим является наиболее предпочтительным для выявления расслоений в многослойных композиционных материалах. Место расслоения (или толщина изделия) часто оценивается по фазе сигнала в режиме отображения ХҮ. Здесь представлена процедура калибровки резонансного режима для использования в виде простого теста «годен/не годен».

Используемые в данном приложении материалы представлены на Рис. 6-45 на стр. 160.

Рис. 6-45 Материалы для выявления расслоений в композиционных материалах — Резонансный режим

В данной процедуре используются следующие материалы:

- Образец из углепластика с расслоениями; 10 слоев с тремя включениями 13 мм. Арт.: NEC-6382 [U8861986]
- Контактная жидкость низкой вязкости, бутылка 118 мл. Арт.: 3308193 [U8770328]
- Кабель для резонансного ПЭП, длиной 3,35 м. Арт.: SBM-CR-P6 [U8800059]
- Резонансный преобразователь 250 кГц. Арт.: S-PR-5 [U8010010]

Установка исходной конфигурации BondMaster 600

- 1. Подключите кабель преобразователя к разъему PROBE дефектоскопа BondMaster 600.
- 2. При запросе, нажмите **ПРОДОЛЖ.** (клавиша А) для принятия информации PowerLink.

В случае использования иного преобразователя (не PowerLink), откройте меню ВЫБОР ПРИЛОЖЕНИЯ (клавиша A), предварительно нажав клавишу меню

ADV SETUP (

3. Выберите приложение Контр. рассл. в слоист. мат-ах, затем нажмите √ (см. Рис. 6-46 на стр. 161).

Рис. 6-46 Определение качества ламинации многослойных материалов

4. Если меню калибровки не открывается автоматически, нажмите и

удерживайте клавишу CAL NULL (💮).

- Держите преобразователь в воздухе. BondMaster 600 должен автоматически выбрать оптимальную частоту для преобразователя. В случае сомнения, нажмите CAL (клавиша C) или отредактируйте значение ЧАСТ. (клавиша D) с помощью ручки регулятора.
- 6. Нажмите ГОТОВО (клавиша Е) [см. Рис. 6-47 на стр. 162].

Рис. 6-47 Экран калибровки САL

Калибровка сигналов

- 1. Положите слой пенопласта под образец. Это обеспечит стабильность показаний.
- 2. Нанесите большое количество жидкости на образец.
- 3. Установите преобразователь на бездефектную часть образца и нажмите клавишу CAL NULL ((;)).
- 4. Медленно переместите преобразователь в зону первого дефекта (отслоения) и удерживайте его в данном положении.
- 5. Дважды нажмите клавишу меню DISP/DOTS () для отображения экрана ТОЧКИ.
- 6. Нажмите **СОХР. СЛЕД.** (клавиша А) для записи первой точки (см. Рис. 6-48 на стр. 163).

Рис. 6-48 Регистрация первой точки

 Медленно переместите преобразователь ко второму дефекту (отслоению) и нажмите СОХР. СЛЕД. (клавиша А) для регистрации второй точки (см. Рис. 6-49 на стр. 163).

Рис. 6-49 Регистрация второй точки

8. Медленно переместите преобразователь к третьему дефекту (отслоению) и нажмите **СОХР. СЛЕД.** (клавиша А) для регистрации третьей точки (см. Рис. 6-50 на стр. 164).

Рис. 6-50 Регистрация третьей точки

- 9. Уберите преобразователь и нажмите клавишу ERASE (
- 10. Нажмите клавишу меню MAIN (^{-₩}₩) для отображения экрана ГЛАВ. МЕНЮ.
- 11. При необходимости, настройте **УГО***Л* (клавиша E), так чтобы точки переместились в область отображения ХҮ.
- 12. Настройте **УСИЛ** (клавиша В) для установки самой верхней точки на 90 % высоты экрана (см. Рис. 6-51 на стр. 164).

Рис. 6-51 Настройка УСИЛ для установки положения самой верхней точки

- 13. Дважды нажмите клавишу меню ALARM (Э) для отображения экрана **ХҮ СИГН 1**, затем установите **НИЖН.** (клавиша C) на **30** %.
- 14. Нажмите клавишу FULL NEXT (→) для перехода в полноэкранный режим, затем медленно просканируйте зону дефектов; убедитесь, что точки соответствуют сигналу (см. Рис. 6-52 на стр. 165).

Рис. 6-52 Повторное сканирование зоны дефектов

Точная настройка параметров прибора

- В зависимости от требований контроля, задайте параметры сигнализации, звуковой сигнализатор или внешний звуковой сигнализатор. Подробнее о сигнализации см. в «Сигнализации, разъемы для подключения и оперативная память» на стр. 231.
- 2. В зависимости от требований контроля, измените показания, отображаемые в режиме реального времени.

По умолчанию, в режиме реального времени отображаются значения амплитуды и фазы сигнала ХҮ. Подробнее о модификации показаний, отображаемых в режиме реального времени см. в «Отображение значений в режиме реального времени» на стр. 62.

Альтернативный режим отображения

• Нажмите клавишу RUN () несколько раз для отображения амплитуды и фазы во времени.

Данный режим отображения особенно удобен при контроле материалов с изменяющейся толщиной, так как оба компонента – амплитуда и фаза – представляют толщину изделия (см. Рис. 6-53 на стр. 166).

Рис. 6-53 Альтернативный режим отображения амплитуды и фазы

Список всех параметров показан на Рис. 6-54 на стр. 166

	BCE	Е НАСТРОЙ	КИ ИМП & Р	PE3			ВСЕ НАСТРС	ОЙКИ ИМП & РЕЗ			
РЕЖИМ	PE30H	HACTOTA	255.9kHz	ХҮ СИГНІ	пол.						
тип пэп		УГОЛ	90.0deg	ΦΟΡΜΑ	прям						
C/H	No Probe	ГУСИЛ	30.0dB	BEPX.	100.0%		ЗВУК.СИГН	вык	ТИП ПОК1	A	
возб. пэп	СРЕДНИЙ	В УСИЛ	30.0dB	нижн.	50.0%		выдержка	0.0sec	пол покт	НИЖ. ЛЕВ.	
ФНЧ	10Hz			ЛЕВ.	0.0%			ļ	ТИП ПОК2	фаза	
				ПРАВ.	100.0%			DEIK			
							рнеш.сигн	BBIK	HUJTHOKZ	ниж.прав.	
DSP MODE	ХҮ ЛЕТ.ТЧК	г полож	50%								
CETKA	МЕЛ	в пол	20%				РЕЖ. ЗАХВ	МГНОВЕН.			
ПОСЛСВЕЧ.	вык						ЗАДЕРЖ	10.0sec	А.ВЫХ.ПИТ	вык	
ОЧИСТ.ЭКР	вык										
ЗАПОЛ.РАЗВ	вкл.	СКАН СИГН	вык	XY CUFH2	вык						
ВРЕМЯ СКАН	5.0Sec	КАНАЛ	АМПЛИТУДА	ΦΟΡΜΑ	КРУГ.						
		BEPX.	75.0%	РАДИУС	20.0%						
		нижн.	25.0%	ГОРИЗ.	50.0%						
				BEPT.	70.0%						
НАЖМИТЕ [А] ДЛЯ 1 го СТОЛБЦА, [В] ДЛЯ 2 го, [С] ДЛЯ 3 го, [Е] ДЛЯ СЛЕД. – – – – – – – – – – – – – – – – – – –										Ļ.	

Рис. 6-54 Список всех параметров

6.2 Руководство по процедурам ОЕМ и разработке приложений с использованием BondMaster 600

Данный раздел содержит наглядные примеры разработки пользовательских процедур контроля.

6.2.1 Анализ частотных характеристик в КМ с сотовым наполнителем — Выбор оптимальной частоты контроля с использованием режима Р-С РАЗВ.

Раздельно-совмещенный режим (P-C) развертки BondMaster 600 имеет новый вид отображения данных СПЕКТР. Режим СПЕКТР отображает частотные характеристики используемого образца и помогает выбрать оптимальную рабочую частоту.

Инструкции в данном разделе служат руководством для максимизации результатов анализа частотных характеристик. Данные инструкции не являются прямой настройкой контроля, но объясняют важность каждого параметра.

Используемые в данном приложении материалы представлены на Рис. 6-55 на стр. 167.

Рис. 6-55 Материалы для анализа частотных характеристик — Режим Р-С РАЗВЕРТКА В данной процедуре используются следующие материалы:

- Образец из композиционного материала (номекс, стекловолокно) с сотовым наполнителем: толщиной 25 мм, двенадцать 3-слойных верхних и нижних обшивок из стеклопластика. Включает два дефекта (отслоения) 25 мм каждый, два дефекта (деламинация) 25 мм каждый и два отремонтированных участка по 25 мм. Арт.: CHRS-1-3 [U8860626]
- Кабель, используемый в режимах МІА и Р-С, длиной 1,83 м. Арт.: SBM-CPM-P11 [U8800058]
- Раздельно-совмещенный ПЭП; расстояние между измерительными наконечниками 14 мм. Арт.: S-PC-P14 [U8800601]

Установка исходной конфигурации BondMaster 600

- 1. Подключите кабель преобразователя к разъему PROBE дефектоскопа BondMaster 600.
- 2. При запросе, нажмите **ПРОДОЛЖ.** (клавиша А) для принятия информации PowerLink.

ПРИМЕЧАНИЕ

В случае использования иного преобразователя (не PowerLink), откройте меню ВЫБОР ПРИЛОЖЕНИЯ (клавиша А), предварительно нажав клавишу меню

ADV SETUP (

3. Выберите приложение **Отслоен. обш. от мат (конус.)**, затем нажмите √ (см. Рис. 6-56 на стр. 169).

Рис. 6-56 Приложение для выявления отслоений в КМ с сотовым наполнителем (конус.объекты)

4. Нажмите клавишу меню MAIN (→) и установите **Ч. РАЗВ.** (клавиша Е) на **НИЗК**.

При разработке приложения или процедуры, низкая частота развертки обычно дает лучшие результаты.

5. При необходимости, настройте значения **НАЧ.ЧАСТ.** (клавиша С) и **КОНЕЧ.ЧАСТ.** (клавиша D).

В качестве отправной точки обычно используются значения в диапазоне от 5 до 50 кГц.

- 6. Нажмите клавишу RUN (Для отображения СПЕКТР+ХҮ.
- 7. Снова нажмите клавишу меню MAIN (¬₩₩₩) для отображения экрана СПЕЦ. МЕНЮ.

Анализ первого прохода

ВАЖНО

Данный подраздел объясняет использование первого прохода ПЭП для «очистки» спектрального отображения, так чтобы во время следующего прохода ПЭП можно было сфокусироваться только на нужных частотах. Это особенно важно, если материал обшивки выполнен из стекловолокна или алюминия, т.к. в таком случае отражается больше сигналов на Р-С ПЭП, что может привести к неправильным результатам анализа частоты.

Определение подходящих частот (первый проход ПЭП)

1. Установите преобразователь на бездефектную часть образца, нажмите клавишу GAIN (**CB**) и настройте **УСИЛ**, так чтобы изображение развертки находилось между двумя делениями внутри квадрата сигнализации (см. Рис. 6-57 на стр. 170).

Рис. 6-57 Изображение развертки между двумя делениями

- 2. Поднимите преобразователь и нажмите клавишу CAL NULL ((;)).
- 3. Удерживая преобразователь на бездефектной зоне образца, нажмите и удерживайте клавишу REF SAVE (🛄) для сохранения опорного донного

удерживаите клавишу КЕГ SAVE ((;;;;)) для сохранения опорного донного сигнала (см. Рис. 6-58 на стр. 171).

Рис. 6-58 Опорный донный сигнал

- При необходимости, настройте ОТСЛЕЖ.ЧАСТ1 (клавиша А) или ОТСЛЕЖ.ЧАСТ2 (клавиша В), чтобы выбрать (выделить) до двух частот.
 Это поможет при идентификации различных пиков сигнала.
- Медленно просканируйте зону дефектов, отслеживая частотный спектр (справа), в частности амплитуду (справа вверху) [см. Рис. 6-59 на стр. 172].

- а) Сосредоточьте больше внимания на разности амплитуд, чем на самом высоком пике. Часто, наилучшей рабочей частотой является не та, что имеет самый высокий пик, но та частота, которая показывает наибольший контраст между качественным и некачественным клеевым соединением.
- b) Постарайтесь определить минимальную и максимальную подходящие частоты; чаще всего, нужен только небольшой отрезок спектра (как правило, крайний нижний). С помощью маркеров частоты определите значения «начальной частоты» и «конечной частоты».
- *с)* Сканируйте образец медленно, круговыми движениями, т.к. максимумы сигнала (пики) сильно варьируются в зависимости от положения ПЭП.
- *d)* Делайте записи, поскольку работа в режиме отображения СПЕКТР достаточно сложная.

Рис. 6-59 Спектральное отображение частоты (с правой стороны экрана)

6. После идентификации нижнего и верхнего пределов, нажмите клавишу меню MAIN (¬₩₩₩) и введите эти предельные значения как НАЧ.ЧАСТ. и КОНЕЧ.ЧАСТ.

Анализ второго прохода

Фокусировка на дефектах (второй проход ПЭП)

 После определения нижнего и верхнего пределов спектра повторите шаги 1–6, но в этот раз сконцентрируйтесь на дефектах.

ПРИМЕЧАНИЕ

- а) Медленно, круговыми движениями, просканируйте образец.
- *b)* Делайте записи при оценке каждого дефекта, материала, частоты и т.д.
- с) Постарайтесь найти общие частоты, которые позволят выявить различные дефекты в самых разных условиях. «Универсальная» частота обычно лучше, т.к. она упрощает тестирование.
- *d*) Главная цель определения оптимальной частоты контроля создание своей собственной процедуры с использованием метода Р-С **РЧ** или **ИМПУЛЬС**.

 е) Функция отслеживания частоты записывает положение точки в режиме реального времени по аналогии с раздельно-совмещенным режимом РЧ/ИМПУЛЬС.

Проследите за сигналом отслеживания частоты в режиме отображения XY, чтобы определить упростят ли тестирование выбранные частоты (см. Рис. 6-60 на стр. 173).

Рис. 6-60 Трассировка сигнала отслеживания частоты

6.2.2 Определение оптимальной частоты для контроля КМ с сотовым наполнителем — Режим МІА

Расширенный диапазон частот BondMaster PC позволяет использовать метод MIA при частотах до 50 кГц. В данном разделе объясняется, как определить наилучшие рабочие частоты для создания процедуры MIA.

Используемые в данном приложении материалы представлены на Рис. 6-61 на стр. 174.

Рис. 6-61 Материалы для определения наилучшей частоты — Режим МІА

В данной процедуре используются следующие материалы:

- Образец из композиционного материала (номекс, стекловолокно) с сотовым наполнителем толщиной 25 мм, двенадцать 3-слойных верхних и нижних обшивок из стеклопластика. Включает два дефекта (отслоения) 25 мм каждый, два дефекта (деламинация) 25 мм каждый и два отремонтированных участка по 25 мм. Арт.: CHRS-1-3 [U8860626]
- Кабель, используемый в режимах МІА и Р-С, длиной 1,83 м. Арт.: SBM-CPM-P11 [U8800058]
- Г-образный преобразователь МІА, наконечник 13 мм. Арт.: S-MP-3 [U8010011]

Установка исходной конфигурации BondMaster 600

- 1. Подключите кабель преобразователя к разъему PROBE дефектоскопа BondMaster 600.
- 2. При запросе, нажмите **ПРОДОЛЖ.** (клавиша А) для принятия информации PowerLink.

3. Выберите приложение **Мелкие отслоен.**, затем нажмите √ (см. Рис. 6-62 на стр. 175).

Рис. 6-62 Приложение для выявления мелких отслоений и отремонтированных участков

Выбор частоты

- 1. Убедитесь, что вы можете определить местоположение всех дефектов опорного образца.
- 2. Нажмите и удерживайте клавишу CAL NULL (()), чтобы открыть экран калибровки CAL.
- 3. При необходимости, с помощью ручки регулятора настройте пределы частоты.
- 4. Установите преобразователь в зоне маленького или наиболее критичного дефекта, нажмите **ДЕФ.ЗОНА** (клавиша E) [см. Рис. 6-63 на стр. 176].

Рис. 6-63 Сигнал от маленького дефекта

5. Установите преобразователь на бездефектную часть образца и нажмите **БЕЗДФК.** (клавиша Е) [см. Рис. 6-64 на стр. 176].

Рис. 6-64 Сигнал при сканировании бездефектной зоны

6. При необходимости, выберите оптимальную рабочую частоту путем настройки **ЧАСТ.** (клавиша D) с помощью ручки регулятора (см. Рис. 6-65 на стр. 177).

В большинстве случаев, BondMaster 600 автоматически выбирает наилучшую рабочую частоту. Однако, в некоторых более сложных приложениях, рекомендуется вручную выбрать рабочую частоту.

- *а*) Больше обращайте внимания на отрицательные пики сигналов, нежели положительные пики.
- b) В случае нескольких пиков, возьмите во внимание первый (левый) пик.
- с) В случае сомнения, снова выберите оптимальную частоту; сохраняйте постоянное равномерное давление на ПЭП. Если результаты теста неудовлетворительны, причиной может быть неправильное положение преобразователя во время контроля.
- *d*) Использование держателя ПЭП НЕ рекомендовано, поскольку это может повлиять на механический импеданс сканируемого участка.

Рис. 6-65 Выбор наилучшей рабочей частоты

7. Выбрав оптимальную частоту, нажмите ГОТОВО (клавиша Е).

Калибровка сигналов

1. После выбора частоты, установите преобразователь на бездефектную зону образца и нажмите клавишу CAL NULL (↔). 2. Поднимите преобразователь в воздух и нажмите клавишу меню MAIN

(-WWW), настройте **УГОЛ** (клавиша Е), так чтобы точки на схеме ХҮ переместились вверх (см. Рис. 6-66 на стр. 178).

Рис. 6-66 Настройка угла для перемещения точек вверх

3. При необходимости, нажмите клавишу GAIN (**dB**) и настройте **УСИЛ** для сохранения на экране сигнала ПЭП «в воздухе» (см. Рис. 6-67 на стр. 179).

ПРИМЕЧАНИЕ

Преобразователи МІА демонстрируют очень высокую чувствительность, от 10 до 18 кГц, поэтому следует использовать малое усиление; например, ±25 дБ.

Рис. 6-67 Настройка УСИЛ для точки сигнала ПЭП «в воздухе»

 Установите преобразователь на бездефектную зону образца, снова нажмите са∟ клавишу CAL NULL (↔), затем медленно просканируйте зону дефектов; при необходимости, настройте УСИЛ, ГУСИЛ или ВУСИЛ (см. Рис. 6-68 на стр. 179).

Рис. 6-68 Повторное сканирование зоны дефектов

7. Программное обеспечение BondMaster PC

Программное обеспечение BondMaster PC используется для управления сохраненными данными, выполнения экранных снимков, обновления ПО BondMaster 600, создания документов в формате PDF, подачи команд прибору, дистанционного контроля прибора, разблокировки дополнительных опций, резервного копирования данных и восстановления настроек BondMaster 600.

Программное обеспечение BondMaster PC (на CD-ROM) включено в стандартный комплект BondMaster 600. Данная программа устанавливает связь между компьютером и дефектоскопом BondMaster 600.

7.1 USB-соединение

Протокол передачи данных по умолчанию для дефектоскопа BondMaster 600: USB 2.0.

7.2 Получение экранных снимков с помощью BondMaster PC

Программное обеспечение BondMaster PC позволяет сохранять экранные снимки во время работы BondMaster 600. Подробнее о получении экранных снимков прибора с помощью BondMaster PC см. в разделе «Скрытая функция — Экранный снимок» на стр. 77.

Получение экранных снимков с помощью BondMaster PC

- 1. Запустите программу BondMaster PC.
- 2. Подключите прибор к компьютеру с помощью USB-кабеля.

3. В меню **Device** (Устройство) выберите **Capture Screen** [Экранный снимок] (см. Рис. 7-1 на стр. 182).

Откроется диалоговое окно Capture Screen (см. Рис. 7-2 на стр. 182).

Рис. 7-1 Меню Device (Устройство) BondMaster PC

4. В диалоговом окне **Capture Screen** щелкните **Start Capture** [Сделать снимок] (см. Рис. 7-2 на стр. 182).

Рис. 7-2 Окно Capture Screen (Сделать снимок)

- 5. После получения экранного снимка выполните следующее:
 - Скопируйте полученное изображение в буфер обмена ПК.
 ИЛИ

Сохраните изображение на жесткий диск ПК или другой накопитель.

7.3 Обновление программного обеспечения

BondMaster PC позволяет обновлять программное обеспечение BondMaster 600 через USB-соединение. Обновление программного обеспечения нужно сначала скачать (интернет или другие источники), а затем сохранить в файле ПК.

Обновление программного обеспечения BondMaster 600

- 1. Дважды нажмите клавишу меню ADV SETUP (
- 2. Нажмите клавишу D, чтобы открыть меню ИНФО (см. Рис. 7-3 на стр. 183).

Рис. 7-3 Меню ИНФО

3. Нажмите клавишу С для выбора меню **ОБНОВЛЕНИЕ** (см. Рис. 7-4 на стр. 184).

	ИНФО	
НАЗВ. МОДЕЛИ	B600M	COCT.
ДАТА СБОРКИ	10/06/2014	
ВЕРСИЯ ПО	1.14 /1.03/1.00	БАТИТЕМ
АППАРАТ. ВЕРСИЯ	0017	
С/Н ПРИБОРА	0138-805A-A539-CFFC	
		ЮР.ИНФО
С/Н ПРИБОРА		1
ДАТА 1-ГО ВКЛЮЧЕНИЯ	00/00/2012	рбновлен
ДАТА ОТПРАВКИ	04/04/2012	
ОБЩЕЕ ВРЕМЯ РАБОТЫ	163Hr53Min	тесты
кол-во включ.	229	
		норм.

Рис. 7-4 Меню UPGRADE (Обновление)

4. Подключите зарядное устройство к BondMaster 600.

На экране прибора появляется сообщение о статусе подключения зарядного устройства (см. Рис. 7-5 на стр. 184 и Рис. 7-6 на стр. 185).

Рис. 7-6 Сообщение с указанием, что зарядное устройство подключено

Обновление программного обеспечения BondMaster 600 стартует только при подключении зарядного устройства к прибору.

5. В меню Utilities (Утилиты обновления) BondMaster PC выберите Upgrade [Обновить] (см. Рис. 7-7 на стр. 185).

Откроется диалоговое окно **Upgrade Device** [Обновить устройство] (см. Рис. 7-8 на стр. 186).

Рис. 7-7 Меню Utilities (Утилиты обновления)

Device n	fust be in the OPGRADE SOFTWAT	(E Mode	
- Execute the following	ng Steps		
1. Press SETUP	ADV Button Twice to go to SETUP 2 Me	nu.	
2. Press D Butt	on to select the About Menu.		
3 Prars C Butt	on to relect the LIDGRADE Menu		
S. Tress C Butt	on to scient the or onable ment.		
Rin Selection			
en eestivii			
BIN Files Location:	C:\Users\andrew.knoll\Desktop\B600-5	W\5-29-14	(m)
	Application	V FPGA	
Application File:	C:\Users\andrew.knoll\Desktop\B600-	W\5-29-14\Beethoven_102.bin	
	CALLsers' and reau level Decision (R600.1	NAS-20.14/EDGAbasthouse VEP & 0 bin	
PPGA File:	cito ser standi e maron de cantop de cere	10 5 11 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0	
Status:			

Рис. 7-8 Окно Upgrade Device (Обновить устройство)

- 6. В диалоговом окне **Upgrade Device** (Обновить устройство) в зоне **Bin Selection** (Выбор буфера) выберите местоположение ПО BondMaster 600, **Application** (Приложение) и **FPGA** [Программируемая логическая интегральная схема] (см. Рис. 7-8 на стр. 186).
- 7. Нажмите Start для начала обновления.
- 8. После завершения обновления ПО выключите и снова включите BondMaster 600 для активации обновления.

7.4 Создание PDF-документов

BondMaster PC позволяет экспортировать отчеты о результатах контроля на жесткий диск ПК или запоминающее устройство. Можно создать отдельный PDF-файл из выбранных данных или экспортировать все данные в виде серии файлов PDF.

При выборе опции **Export All Files As Adobe Acrobat (PDF)** [Экспортировать все данные в формате PDF] все данные BondMaster 600 автоматически сохраняются в виде отдельных PDF-файлов, в специальном каталоге. Созданные PDF-файлы можно просматривать и печатать с помощью Adobe Acrobat или другой аналогичной программы. Важно выбрать папку назначения (куда файлы будут экспортированы) до создания PDF-файлов.

Создание отдельного PDF-файла из выбранных данных

◆ На левой панели окна BondMaster PC выберите файл (см. Рис. 7-9 на стр. 187), затем выберите Export As > PDF [Экспортировать как > PDF] (см. Рис. 7-10 на стр. 187).

Рис. 7-9 Файлы на левой панели окна BondMaster PC

File	Device Utilities Misc Help		
	New	•	
	Export All Files As Adobe Acrobat (PDF)		— Выбор всех файлов для экспорта
	Save		
2	Save As		
	Export As	•	— Выбор отдельного файла для очирались
×	Delete		экспорта
AB	Rename		
	Print Setup		
	Print Preview		
	Print		

Рис. 7-10 Меню File (Файл)

Экспорт всех данных — Команда Export All Files As Adobe Acrobat (PDF)

♦ В меню File (Файл) BondMaster PC выберите команду Export All Files As Adobe Acrobat (PDF) [см. Рис. 7-10 на стр. 187].

7.5 Команды

BondMaster PC позволяет подавать команды чтения, записи или выполнения.

Просмотр полного списка команд

• В меню **Help** (Справка) выберите **Remote Command** (Удаленная команда) [см. Рис. 7-11 на стр. 188].

Список команд открывается в отдельном окне с использованием программы ПК по умолчанию для просмотра PDF-файлов.

Рис. 7-11 Выбор Remote Command (Удаленная команда)

Подача удаленной команды

1. В меню **Device** (Устройство) выберите **Issue Command** [Подача команды] (см. Рис. 7-12 на стр. 189).

Открывается диалоговое окно Issue Command (Рис. 7-13 на стр. 189).

ſ	BONDMASTER PC							
	File	Devi	ce	Utilities	Misc	Help		
			Import from Device					
	File Lo	2	Export to Device					
	4		File Manager					
		0	Issue Command					
			Remote Control					
			Capture Screen					
			Unlock Options					

Рис. 7-12 Меню Device (Устройство) — Issue Command (Подача команды)

2. В диалоговом окне **Issue Command** введите команду (см. Рис. 7-13 на стр. 189).

🕅 Issue Command		- • ×
Enter a Command		
FR1?		
Result		
1.0MHz OK		
	Send Clear	Close

Рис. 7-13 Окно Issue Command (Подача команды)

Команды дают право на чтение (R), запись (W) или выполнение (X). В Табл. 7 на стр. 190 представлен список команд и формат записи для вывода команды.

 В диалоговом окне Issue Command (Подача команды) нажмите Send (Отправить) [см. Рис. 7-13 на стр. 189].
 ИЛИ

Нажмите Enter на клавиатуре ПК.

Условные обозначения удаленных команд BondMaster 600:

- Команда чтения (R) заканчивается на "?" Например: ANG?
- Команда записи (W) включает "=", за которым следует значение (без пробела)

Например: ANG=45

• Команда выполнения (X) включает только команду Например: DLB

ПРИМЕЧАНИЕ

Все команды заканчиваются символом возврата каретки и символом перевода строки ("\r\n"). Все пробелы в команде записи должны быть заменены подчеркиванием. Например, для обозначения FRQ NEG используйте FRQ_NEG.

Табл. 7 Удаленные команды Во	ondMaster 600
------------------------------	---------------

Variante	Omicanica	R/W/X	Диапазон строк		
команда	Описание		Мин.	Макс.	
ADW	Alarm Dwell (Выдержка сигнализации)	R/W	0.000	10.000	
ANG	Angle 1 (Угол 1)	R/W	0.000	359.900	

Variance			Диапазон строк		
команда	Описание	N/VV/X	Мин.	Макс.	
ANI	Angle Step Increment (Шаг настройки угла)	R	0.100	N/A	
ASE	Sweep Erase (Очистка развертки)	R/W	ON/OFF (B	КЛ/ВЫКЛ)	
AST	Auto Sweep Time (Врем. интервал развертки)	R/W	0.005 10.000		
AUE	Auto Erase After Null (Авто. очистка после нулевого положения)	R/W	ON/OFF (ВКЛ/ВЫКЛ)		
ALC	Alarm Condition (Условия срабатывания сигн.)	R	ОN/OFF (ВКЛ/ВЫКЛ)		
ALMXY1	Alarm Type 1 (Тип сигн. 1)	R/W	OFF/FRQ_NE	EG/FRQ_POS	
ALMXY1SHAPE	Alarm Shape 1 (Форма сигн. 1)	R/W	BOX/SECTOR/CIRCLE		
ALMXY1BTOP	Alarm 1 Box Top (Верхний порог сигн.1)	R/W	0.0	100.0	
ALMXY1BBOT	Alarm 1 Box Bottom (Нижний порог сигн. 1)	R/W	0.0	100.0	

Табл. 7 Удаленные команды BondMaster 600 (продолжение)

V	Omraamia	D/M//V	Диапазон строк	
команда	Описание	K/W/A	Мин.	Макс.
ALMXY1BLEFT	Alarm 1 Box Left (Левый порог сигн. 1)	R/W	0.0	100.0
ALMXY1BRIGHT	Alarm 1 Box Right (Правый порог сигн. 1)	R/W	0.0	100.0
ALMXY1SIDIA	Alarm 1 Sector Inner Diameter (Внут. диаметр сектор сигн.1)	R/W	7.0	263.0
ALMXY1SODIA	Alarm 1 Sector Inner Diameter (Наруж. диаметр сектор сигн.1)	R/W	7.0	263.0
ALMXY1SSANG	Alarm 1 Sector Start Angle (Нач. угол сектор сигн.1)	R/W	0.0	359.0
ALMXY1SEANG	Alarm 1 Sector Start Angle (Конеч. угол сектор сигн.1)	R/W	0.0	359.0
ALMXY1CRAD	Alarm 1 Circle Radius (Радиус окружности Сигн. 1)	R/W	0.0	50.0
ALMXY1CHOR	Alarm 1 Circle Horizontal (Горизонт. круг сигн. 1)	R/W	0.0	99.5

Табл. 7 Удаленные команды BondMaster 600 (продолжение)

V			Диапазон строк		
команда	Описание	K/VV/X	Мин.	Макс.	
ALMXY1CVER	Alarm 1 Circle Vertical (Вертик. круг сигн. 1)	R/W	0.0	99.5	
ALMXY2	Alarm Type 2 (Тип сигн. 1)	R/W	OFF/FRQ_NE	EG/FRQ_POS	
ALMXY2SHAPE	Alarm Shape 2 (Форма сигн. 1)	R/W	ВОХ/SECTOF (ПРЯМ/СЕКТ	R/CIRCLE ГОР/КРУГ.)	
ALMXY2BTOP	Alarm 2 Box Top (Верхний порог сигн.1)	R/W	0.0	100.0	
ALMXY2BBOT	Alarm 2 Box Bottom (Нижний порог сигн. 1)	R/W	0.0	100.0	
ALMXY2BLEFT	Alarm 2 Box Left (Левый порог сигн. 1)	R/W	0.0	100.0	
ALMXY2BRIGHT	Alarm 2 Box Right (Правый порог сигн. 1)	R/W	0.0	100.0	
ALMXY2SIDIA	Alarm 2 Sector Inner Diameter (Внут. диаметр сектор сигн. 1)	R/W	7.0	263.0	
ALMXY2SODIA	Alarm 2 Sector Outer Diameter (Наруж. диам. сектор сигн. 1)	R/W	7.0	263.0	

Табл. 7 Удаленные команды BondMaster 600 (продолжение)

Vorene Orregori		D/M/V	Диапазон строк		
команда	Описание	K/W/A	Мин.	Макс.	
ALMXY2SSANG	Alarm 2 Sector Start Angle (Нач. угол сектор сигн.2)	R/W	0.0	359.0	
ALMXY2SEANG	Alarm 2 Sector End Angle (Конеч. угол сектор сигн. 2)	R/W	0.0	359.0	
ALMXY2CRAD	Alarm 2 Circle Radius (Радиус окружности сигн. 2)	R/W	0.0	50.0	
ALMXY2CHOR	Alarm 2 Circle Horizontal (Горизонт. круг сигн. 2)	R/W	0.0	99.5	
ALMXY2CVER	Alarm 2 Circle Vertical (Вертик. круг сигн. 2)	R/W	0.0	99.5	
ALMSCN	Alarm Type Scan (Скан тип сигн.)	R/W	OFF/FRQ_NE	EG/FRQ_POS	
ALMSCNCHN	Alarm Scan Channel (Канал скан. сигн.)	R/W	N/A	N/A	
ALMSCNTOP	Alarm Scan Top (Сигн. верх. скан.)	R/W	N/A	N/A	
ALMSCNBOT	Alarm Scan Bottom (Сигн. нижн. скан.)	R/W	N/A	N/A	

Табл. 7 Удаленные команды BondMaster 600 (продолжение)

Voyana	Описания	D/M/V	Диапазон строк		
команда	Описание	N/W/A	Мин.	Макс.	
ALMSPC	Alarm Type Spectrum (Спектр типа сигн.)	R/W	OFF/FRQ_NEG/FRQ_POS		
ALMSPCCHN	Alarm Spectrum Channel (Канал спектра сигн.)	R/W	AMPLITUDE (Амплитуда/	/PHASE Фаза)	
ALMSPCTOP	Alarm Spectrum Top (Верхний спектр сигн.)	R/W	0.0	100.0	
ALMSPCBOT	Alarm Spectrum Bottom (Нижний спектр сигн.)	R/W	0.0	100.0	
ALMSPCLEFT	Alarm Spectrum Left (Левый спектр сигн.)	R/W	0.0	100.0	
ALMSPCRIGHT	Alarm Spectrum Right (Правый спектр сигн.)	R/W	0.0	100.0	
ALMR	Alarm Type RF (Тип сигн. РЧ)	R/W	OFF/FRQ_NE	G/FRQ_POS	
ALMRFTOP	Alarm RF Top (Верх. сигн. РЧ)	R/W	0.0	100.0	
ALMRFBOT	Alarm RF Bottom (Нижн. сигн. РЧ)	R/W	0.0	100.0	
BAT	Predicted Batt Capacity (Предпол. емкость аккумулятора)	R	0	100	

Табл. 7 Удаленные команды BondMaster 600 (продолжение)

Variance	0	R/W/X	Диапазон строк	
команда	Описание	K/W/A	Мин.	Макс.
BATT	Predicted Batt Capacity (Предпол. емкость аккумулятора)	R	0	100
ВСР	Battery Charger Present (Наличие заряд. устройства)	R	TRUE/FALSE (Да/Нет)	
ВМР	Screenshot (Снимок экрана)	Х	N/A	N/A
ССТ	Capture Time (Время захвата)	R/W	2.5	120.0
CDM	Cal Display Mode (Режим отображ. калибровки)	R/W	ABS_AMPL, ABS_PHAS, DIF_AMPL or DIF_PHAS	
CLB	Color Brightness (Яркость цветов)	R/W	0, 25, 50, 75, 1	00
CSH	Color Scheme (Цветовая схема)	R/W	ПО УМОЛ., СНАРУЖИ, КРАСНЫЙ, ЗЕЛЕНЫЙ, СИНИЙ, РОЗОВЫЙ, КЛАСС, ОФИС	
CNL	Set Continuous Null (Установка непрерыв. нулевого фильтра)	R/W	OFF/0.2 Hz/0.5 Hz/1.0 Hz	
СТЕ	Display Erase Time (Время очистки экрана)	R/W	0.0	60.0

Табл. 7 Удаленные команды BondMaster 600 (продолжение)

Varaaaa	D AN/N	Диапазон строк		
команда	Описание	K/W/A	Мин.	Макс.
СҮС	Cycles (Циклы)	R/W	1	10
DAL	Data Location (Местополож. данных)	R/W	1	# Entries in Datalogger (Кол-во записей в регистрат оре данных)
DAN	Data Name (Имя данных)	R/W	Valid name in Datalogger (Дейст. имя в регистраторе данных)	
DAS	Up/Download Data Only (Загрузка/обнов ление данных)	R	N/A	N/A
DAT	Clock Date (Дата)	R	ММ/DD/YYYY DD/MM/YYYY В зависимости от настройки системы	
DAY	Day (День)	R/W	1	31
DCM	Capture Mode (Режим захвата)	R/W	INSTANT/DELAYED (Мгновенный/с задержкой)	
DEF	Data Status - Block (Состояние данных – Заблок.)	R	N/A	N/A

Табл. 7 Удаленные команды BondMaster 600 (продолжение)

	D/M//V	Диапазон строк		
команда	Описание	K/VV/A	Мин.	Макс.
DLB	Datalogger Backup (Резервное копир. данных)	Х	N/A	N/A
DLR	Datalogger Restore (Восстан. данных)	Х	N/A	N/A
DSC	Powerlink Probe Description (Описание преобразовател я Powerlink)	R	Описание преобразователя	
DLRC	Number Backup Files on External SD Card (Кол-во резервных файлов на внешней SD- карте)	R	0	502
ERS	Screen Erase (Очистка экрана)	Х	N/A	N/A
EXH	External Horn (Внешний звук. сигнализатор)	R/W	ON/OFF (ВКЛ/ВЫКЛ)	
FILEREADXML?\2	Read File in XML Format From Gage (Читать файл в формате XML)	R	N/A	N/A

Табл. 7 Удаленные команды BondMaster 600 (продолжение)

Voyana	Omraamaa	R/W/X	Диапазон строк	
команда	Описание	N/VV/A	Мин.	Макс.
FILEWRITEXML=\2	Write XML File to Gage (Записать файл в формате XML)	W	N/A	N/A
F1T	Frequency 1 Tracking (Отслеж. частоты 1)	R/W	ВЫКЛ или значение между начальной и конечной частотами	
F2T	Frequency 2 Tracking (Отслеж. частоты 2)	R/W	ВЫКЛ или значение между начальной и конечной частотами	
FLO	Frequency Low Pass (Низкие частоты)	R/W	10.0	2500.0
FRQ	Frequency 1 (Частота 1)	R/W	10	12000000
FRZ	Screen Freeze (Фиксация изобр. на экране)	Х	N/A	N/A
FSP	Stop Frequency (Конечная частота)	R/W	PC(RF): 1.0–50.0 SWEPT: 5.0–100.0 MIA: 1.0–10.0 RESON: 1.0–500.0	
FST	Start frequency (Начальная частота)	R/W	PC(RF): 1.0–5 SWEPT: 5.0–1 MIA: 1.0–10 RESON: 1.0–5	0.0 00.0 .0 500.0

Табл. 7	Удаленные	команды	BondMaster 60	00 (продолжение)
---------	-----------	---------	---------------	------------------

Voyana	Omraamia	D/M/V	Диапазон строк	
команда	Описание	N/VV/A	Мин.	Макс.
GMD	Gage Mode (Режим)	R/W	PC_(RF) PC_SWEPT MIA RESON	
GN1	Frequency Gain 1 (Усиление 1 частоты)	R/W	0.0	100.0
GRT	Grid Type (Тип сетки)	R/W	ВЫКЛ. 10×10 МЕЛКАЯ КРУПНАЯ WEB	
GTP	Gate Position (Полож. строба)	R/W	АВТО или 0-7920.0	
GTT	Gate Туре (Тип строба)	R/W	ОДНОЧАС ДВУХЧАСТС	DT
GAGECONFIGDATE	Gage Shipment Date (Дата отправки прибора)	R	ММ/ <i>ДД</i> /ГГГГ	
GAGEINITDATE	Gage Initial Power Up Date (Дата 1-го включения)	R	ΜΜ/ДД/ΓΓΓΓ	
HGN	Freq 1 Hor Gain (Горизонт. усил. частоты 1)	R/W	0.0	100.0

Табл. 7 Удаленные команды BondMaster 600 (продолжение)

V	0	R/W/Y	Диапазон строк		
команда	Описание	K/W/A	Мин.	Макс.	
НРО	Horizontal Position (Горизонт. положение)	R/W	-16	116	
HR.	Hours (Часы)	R	0	23	
HRN	Alarm Horn Volume (Громкость звук. сигнала)	R/W	ON/OFF (ВКЛ/ВЫКЛ)		
HWV	Hardware Version (Версия аппарат. обеспечения)	R	DxDDDD, где D: 0–9, A-F		
HW	Hardware Version (Версия аппарат. обеспечения)	R	DxDDDD, где D: 0–9, А-F		
ISN	Instrument Serial Number (Серийный номер прибора)	R	N/A	N/A	
KEY	Команды с клавиатуры	W	MAIN/DISPLAY/ALARM /MEMORY/SETUP/NUL/ ERASE/ SAVE/FREEZE/ AUTO-LIFT/REF/GAIN/ RUN/ENTER/ESCAPE/ NEXT/ FULL_NEXT/ A/B/C/D/E		
КNOB	Команды ручки регулятора	W	CCW/CW/UF	P/DOWN	
KER	Очистка экрана	X	N/A	N/A	

Табл. 7 Удаленные команды BondMaster 600 (продолжение)

Vormen	0	D/TAT/V	Диапазон строк	
команда	Описание	N/W/A	Мин.	Макс.
LAN	Язык	R/W	НЕМЕЦКИЙ/ ЯПОНСКИЙ/ КИТАЙСКИЙ/РУССКИЙ/ ШВЕДСКИЙ/ ИТАЛЬЯНСКИЙ/ ПОРТУГАЛЬСКИЙ/ НОРВЕЖСКИЙ/ ВЕНГЕРСКИЙ/ ПОЛЬСКИЙ/ ГОЛЛАНДСКИЙ/ ЧЕШСКИЙ	
LDN	Местополож. последних внесенных данных	R	Макс. число файлов	
LPN	Местополож. последних внесенных данных	R	Макс. число файлов	
LNS	Статус Powerlink	R	N/A	N/A
MIN	Минуты	R/W	0	59
MON	Месяц	R/W	1	12
MPC	Класс преобразовател я Powerlink	R	Описание класса	
MPD	Режим преобразователя Powerlink	R	Описание режима	
MPS	C/H преобразовател я Powerlink	R	Серийный но	омер

Табл. 7 Удаленные команды BondMaster 600 (продолжение)

T/	0		Диапазон строк	
Команда	Описание	K/W/X	Мин.	Макс.
NAM	Название прибора	R	B600/E	3600M
OPTIONSKEY	Лицензионный ключ (опции)	W	Код опции	
РСМ	Разделитель	R/W	ТОЧКА (.)/ЗАІ	(,) RATRП
PDR	Возбужд. ПЭП	R/W	НИЗК/СРЕД	/ВЫСОК
PEF	Статус программы	R	N/A	N/A
PGL	Местополож. программы	R	Имя выбран. файла	
PGM	Обновить/загруз ить программу	R/W	N/A	N/A
PGN	Program Name (Название программы)	R/W	Имя выбран. файла	
PRE	Pre Amplifier (Усилитель)	R/W	ON/OFF (B	КЛ/ВЫКЛ)
POWERUP	Общее время работы	R	Чио	240
PRINTSCREEN	Снимок экрана	R	N/A	N/A
REC	Запись	R/W	0.1	60.0
RDI	Ток батареи	R	N/A	N/A
RDV	Напряжение батареи	R	N/A	N/A
RLK	Блокировка	R	ON/OFF (B	КЛ/ВЫКЛ)

Табл. 7 Удаленные команды BondMaster 600 (продолжение)

Voyana	Omraamia	D/MI/V	Диапазон строк	
команда	Описание	N/VV/A	Мин.	Макс.
RT1	Reading 1 Туре (Тип показания 1)	R/W	OFF (Выкл) AMP_VMAX VP-P HP-P Phase (Фаза) Amp_p-p	
RT2	Reading 2 Туре (Тип показания 2)	R/W	OFF (Выкл) AMP_VMAX VP-P HP-P Phase (Фаза) Amp_p-p	
RL1	Reading 1 Location (Местополож. показания 1)	R/W	ТОР_LEFT (Верх. левый) ТОР_RIGHT (Верх. правый) LEFT (Левый) RIGHT (Правый) BOT_CNTR (Нижн. центр) BOT_RIGHT (Нижн. правый)	

Табл. 7 Удаленные команды BondMaster 600 (продолжение)

Varian	0	D/M//V	Диапазон строк	
команда	Описание	N/VV/A	Мин.	Макс.
RL2	Reading 2 Location (Местополож. показания 2)	R/W	ТОР_LEFT (Верх. левый) ТОР_RIGHT (Верх. правый) LEFT (Левый) RIGHT (Правый) BOT_CNTR (Нижн. центр) BOT_RIGHT (Нижн. правый)	
RUNTIME	Total Run Time (Общее время работы)	R	N/A	N/A
SCT	Scan Time (Время скан.)	R/W	N/A	N/A
SEC	Seconds (Секунды)	R/W	0	59
SNO	Gage Serial Number (Серийный номер)	R	ХХХХ-ХХХХ-ХХХХ- ХХХХ, где Х: 0–9, А–F	
SRT	Swept Rate (Частота развертки)	R/W	LOW (Низкая) MEDIUM (Средняя) HIGH (Высокая)	
SW	Software Version (Версия ПО)	R	N/A	N/A
TIM	Clock Time (Настройка времени)	R	XX:	XX

Табл. 7 Удаленные команды BondMaster 600 (продолжение)

Variance	0=======	D/M//V	Диапазон строк	
команда	Описание	N/VV/A	Мин.	Макс.
TGT	Gate Position (Положение строба)	R/W	0	59
TMD	Trace Mode (Режим трассировки)	R/W	DOT, (ТОЧКА	ВОХ /ПРЯМ)
TMW	Time Window (Временной интервал)	R/W	ОN/OFF (ВКЛ/ВЫКЛ)	
UI1	User Info 1 (Инфо польз. 1)	R/W	Макс. 40 символов — Без пробелов Используйте символ «{» вместо пробела	
UI2	User Info 2 (Инфо польз. 2)	R/W	Макс. 40 символов — Без пробелов Используйте символ «{» вместо пробела	
UI3	User Info 3 (Инфо польз. 3)	R/W	Макс. 40 символов — Без пробелов Используйте символ «{» вместо пробела	
UI4	User Info 4 (Инфо польз. 4)	R/W	Макс. 40 символов — Без пробелов Используйте символ «{» вместо пробела	
UI5	User Info 5 (Инфо польз. 5)	R/W	Макс. 40 сим пробелов Используйте вместо пробе	волов — Без символ «{» ела

Табл. 7 Удаленные команды BondMaster 600 (продолжение)
Variance	0=======	D/MI/V	Диапазон строк	
команда	Описание	N/VV/X	Мин.	Макс.
UI6	User Info 6 (Инфо польз. 6)	R/W	Макс. 40 символов — Без пробелов Используйте символ «{» вместо пробела	
UI7	User Info 7 (Инфо польз. 7)	R/W	Макс. 40 сим — Без пробе. Используйте вместо пробе	волов 10в символ «{» ела
UI8	User Info 8 (Инфо польз. 8)	R/W	Макс. 40 сим — Без пробе. Используйте вместо пробе	волов 10в символ «{» гла
UI9	User Info 9 (Инфо польз. 9)	R/W	Макс. 40 сим — Без пробе. Используйте вместо пробе	волов 10в символ «{» гла
UI10	User Info 10 (Инфо польз. 10)	R/W	Макс. 40 символов — Без пробелов Используйте символ «{» вместо пробела	
UI11	User Info 11 (Инфо польз. 11)	R/W	Макс. 40 символов — Без пробелов Используйте символ «{ вместо пробела	
UI12	User Info 12 (Инфо польз. 12)	R/W	Макс. 40 сим — Без пробе. Используйте вместо пробе	волов 10в символ «{» ела

Табл. 7 Удаленные команды BondMaster 600 (продолжение)

Voyana	0	D/M/V	Диапазон строк	
команда	Описание	N/VV/A	Мин.	Макс.
UI13	User Info 13 (Инфо польз. 13)	R/W	Макс. 40 сим — Без пробе. Используйте вместо пробе	волов лов символ «{» ела
UI14	User Info 14 (Инфо польз. 14)	R/W	Макс. 40 сим — Без пробе. Используйте вместо пробе	волов лов символ «{» гла
UI15	User Info 15 (Инфо польз. 15)	R/W	Макс. 40 сим — Без пробе. Используйте вместо пробе	волов лов • символ «{» ела
VAP	VAP Variable R/V Persistence (Настраиваемое послесвечение)		0.0	10.0
VER	Software Version (Версия ПО)	R	N/A	N/A
VGN Freq 1 Vert Gain (Верт. усиление част. 1)		R/W	0.0	60.0
VPO Vertical Position (Вертик. полож.)		R/W	0	100
VER_PIC	PIC Version (Версия PIC)	R	N/A	N/A
WD1	Width 1 (Длина 1)	R/W	360	10000
YR Year (Год)		R/W	2013	2100

Табл. 7 Удаленные команды BondMaster 600 (продолжение)

7.6 Удаленный контроль

Программное обеспечение BondMaster PC позволяет на расстоянии управлять дефектоскопом BondMaster 600. Это очень удобно при использовании прибора в высокотемпературных камерах (защищенных от радиоактивного излучения) или в учебных целях.

Функция удаленного контроля BondMaster PC активируется нажатием **Remote Control** (Удаленный контроль) в меню **Device** (см. Рис. 7-12 на стр. 189). Диалоговое окно **Remote Command** отображает переднюю панель BondMaster 600: элементы управления и экран. Теперь вы можете управлять прибором, как если бы он был перед вами (см. Рис. 7-14 на стр. 210).

ПРИМЕЧАНИЕ

Для отображения экрана дефектоскопа нажмите **Refresh Screen** (Обновить экран) в окне **Remote Command** [Удаленная команда] (см. Рис. 7-14 на стр. 210). Для одновременной проверки настроек используйте дисплей BondMaster 600 или внешний монитор.

Remote Command	123	
	OLYMPUS <u>VGAIN</u> 0.0dB App 0.0 0.0	FULL
	<u>час</u> 10,	DIDIA OkHZ MIPY B
ERASE RUN	45 20 20	,0dB I/IHA 00us
FREEZE SAVE	ртов	вто раж рч
BONDMASTER 600		
Command Send:	Refn	esh Screen
Status:		
	Clear	Close

Рис. 7-14 Окно Remote Command (Удаленная команда)

Функция ручки регулятора при дистанционном управлении прибором

В режиме удаленного контроля ручка регулятора делится на две зоны. Нажатие на верхнюю часть ручки увеличивает значение настройки, нажатие на нижнюю часть ручки уменьшает значение (см. Рис. 7-15 на стр. 211).

Рис. 7-15 Функции ручки регулятора

7.7 Диспетчер файлов

Диспетчер файлов ПО BondMaster PC позволяет переименовывать, удалять и вызывать файлы, сохраненные в BondMaster 600.

Доступ к диспетчеру файлов

 В меню Device программного обеспечения BondMaster PC выберите File Manager [Диспетчер файлов] (см. Рис. 7-16 на стр. 212).

Открывается диалоговое окно Manage File (см. Рис. 7-17 на стр. 212).

Рис. 7-16 Команда File Manager (Диспетчер файлов)

🔉 Manag	e File				- 0 ×
File Lis	t				
	File Name			Create Date	Mode
1	10_30_00			11/08/2013 10:30a	EDDY
2	19_29_26			01/13/2013 07:29p	EDDY
4			Ш		
		Refresh File List	Delete	Rename Recall	Close

Рис. 7-17 Окно Manage File (Управление файлом)

Доступны следующие функции:

- Delete Используется для удаления файлов BondMaster 600.
- Rename Используется для переименования файлов BondMaster 600, в зависимости от выполняемого контроля или заказчика.
- Recall Вызывает файл BondMaster 600.
- Refresh File List Обновляет список файлов в ПО BondMaster PC.

Удаление файла в BondMaster 600

1. В диалоговом окне **Manage File** (Управление файлом) выберите нужный файл и щелкните **Delete** (см. Рис. 7-17 на стр. 212).

Открывается окно **Confirmation** для подтверждения/отмены удаления файла с устройства (см. Рис. 7-18 на стр. 213).

2. Нажмите Yes (Да) для подтверждения удаления файла.

ИЛИ

Нажмите No (Нет) для отмены операции.

ПРИМЕЧАНИЕ

Выбор Yes в окне Confirmation безвозвратно удаляет файл.

	File Name		Create Date	Mode
1	10_30_00		11/08/2013 10:30a	EDDY
2	19_29_26		01/13/2013 07:29p	EDDY
		Are You Sure You Want to DELETE the Selected	File on the Device?	

Переименование файла в BondMaster 600

 В диалоговом окне Manage File выберите нужный файл и щелкните Rename [Переименовать] (см. Рис. 7-17 на стр. 212).
 Открывается диалоговое окно Rename (см. Рис. 7-19 на стр. 214).

💽 Rename	
New Name:	
μο_зо_оо	
	Ok Cancel

Рис. 7-19 Диалоговое окно Rename (Переименование)

2. В диалоговом окне **Rename** введите новое имя файла.

По умолчанию, BondMaster 600 включает в имя файла 24-часовой формат времени HH_MM_SS (Часы_Минуты_Секунды).

3. Щелкните ОК, чтобы сохранить новое имя файла.

Вызов файла в BondMaster 600

1. В диалоговом окне **Manage File** выберите нужный файл и щелкните **Recall** [Вызвать] (см. Рис. 7-17 на стр. 212).

Открывается окно **Confirmation** для подтверждения/отмены вызова выбранного файла (см. Рис. 7-20 на стр. 214).

Co	onfirmation
	Are You Sure You Want to RECALL the Selected File on the Device?
	Yes No

Рис. 7-20 Сообщение для подтверждения вызова

2. Щелкните **Yes** (Да) для подтверждения вызова файла. ИЛИ

Щелкните No (Нет) для отмены операции.

ПРИМЕЧАНИЕ

При подтверждении вызова сохраненного файла (кнопка **Yes**) все предыдущие настройки будут переписаны; данная операция необратима.

Обновление списка файлов

В диалоговом окне Manage File щелкните Refresh File List [Обновить список файлов] (см. Рис. 7-17 на стр. 212).

7.8 Активация дополнительных опций

BondMaster PC позволяет регулярно обновлять программное обеспечение с помощью лицензионного ключа, приобретаемого в компании Olympus. Все модели BondMaster 600 имеют аналогичное аппаратное обеспечение с поддержкой множества функций. С помощью функции **Unlock Options** (Активация опций) можно быстро и в любое время обновить функциональность прибора без необходимости его отправки на завод-изготовитель или в сервисный центр.

Активация дополнительных опций

1. В меню **Device** программного обеспечения BondMaster PC выберите **Unlock Options** [Активация опций] (см. Рис. 7-21 на стр. 215).

Откроется диалоговое окно Unlock Options (см. Рис. 7-22 на стр. 216).

Рис. 7-21 Команда Unlock Options (Активация опций)

2. В диалоговом окне Unlock Options введите лицензионный ключ и нажмите ОК.

Unlock Options	
Enter a License Key to unlock instrumer	t options:
1	
Serial #013C-20AF-80C9-D887	Ok Cancel

Рис. 7-22 Диалоговое окно Unlock Options (Активация опций)

3. Перезагрузите BondMaster 600 (выключите и снова включите прибор). После перезагрузки BondMaster 600 дополнительные функции будут разблокированы и готовы к использованию.

7.9 Резервное копирование

Программное обеспечение BondMaster PC позволяет создавать резервные копии и дублировать файлы BondMaster 600. Файл резервной копии сохраняется на съемной карте памяти microSD.

Резервное копирование файлов BondMaster 600

1. Убедитесь, что карта памяти microSD вставлена в BondMaster 600 (см. Рис. 7-23 на стр. 217).

Рис. 7-23 Расположение карты памяти microSD

2. В меню Utilities программного обеспечения BondMaster PC выберите **Backup** [Резервное копирование] (см. Рис. 7-24 на стр. 217).

Открывается диалоговое окно Backup (см. Рис. 7-25 на стр. 218).

Рис. 7-24 Команда Васкир (Резервное копирование)

3. В диалоговом окне Backup нажмите Start (Начало).

Рис. 7-25 Диалоговое окно Backup (Резервное копирование)

4. В появившемся окне подтверждения **Confirmation** (см. Рис. 7-26 на стр. 218) нажмите **OK** для запуска резервного копирования.

Confirmation
WARNING: Backup will save all the Files from this Device to the SD Card. To BACKUP this Device. Click OK, To Quit, Click Cancel.
OK Cancel

Рис. 7-26 Диалоговое окно Confirmation для подтверждения начала резервного копирования

5. После завершения резервного копирования нажмите **Close** [Закрыть] (см. Рис. 7-27 на стр. 218).

Рис. 7-27 Диалоговое окно Backup (Резервное копирование)

7.10 Восстановление данных

Программное обеспечение BondMaster PC позволяет легко восстанавливать файлы BondMaster 600 с помощью ранее созданных резервных копий, сохраненных на внешней карте памяти microSD. Файл резервной копии сохраняется на внешнем носителе для дальнейшей возможной перезаписи (замены) данных, сохраненных во внутренней памяти прибора. Данные можно также дублировать с помощью резервных файлов для создания точной копии, и дальнейшей передачи с одного прибора на другой.

Восстановление данных BondMaster 600

- 1. Убедитесь, что карта памяти microSD вставлена в BondMaster 600 (см. Рис. 7-23 на стр. 217).
- 2. В меню Utilities программного обеспечения BondMaster PC выберите Restore [Восстановить] (см. Рис. 7-28 на стр. 219).

Открывается диалоговое окно Restore (см. Рис. 7-29 на стр. 219).

Magaza BC	NDMASTE	ER PC			
File	Device	Utilities	Misc	Help	
File L	ocation:C:\l	Rest	ore		L
	🍯 Data	Upg	rade		:(1
📴 Files					
	4 🖂 Hear	Information			

Рис. 7-28 Команда Restore (Восстановление данных)

3. В диалоговом окне Restore нажмите Start (Начало).

Рис. 7-29 Диалоговое окно Restore (Восстановление данных)

4. В появившемся окне подтверждения **Confirmation** (см. Рис. 7-30 на стр. 220) нажмите **ОК** для начала восстановления данных.

Рис. 7-30	Окно Confirmation для подтверждения начала восстановления
	данных

ПРИМЕЧАНИЕ

Восстановление данных стирает содержимое внутренней памяти и заменяет его на данные, сохраненные на карте памяти microSD.

5. После завершения восстановления данных нажмите **Close** [Закрыть] (см. Рис. 7-31 на стр. 220).

Restore		X
Restore Completed 16 File(s)		
	Start	Close

Рис. 7-31 Диалоговое окно Restore (Восстановление данных)

8. Технический уход и устранение неисправностей

Дефектоскоп BondMaster 600 представляет собой электронный измерительный прибор для контроля качества композитных материалов, не требующий особого технического обслуживания. Техническое обслуживание и устранение незначительных неисправностей может быть выполнено самим пользователем. Однако, при возникновении трудностей можно всегда обратиться в региональный центр технического обслуживания Olympus.

8.1 Литий-ионная аккумуляторная батарея

В обычных условиях, продолжительность автономной работы BondMaster 600 составляет 8 часов без подзарядки (стандартные измерения). Индикатор заряда батареи отображает остаточный уровень заряда (в процентах). При недостаточном уровне заряда батареи BondMaster 600 автоматически выключается, чтобы не повредить батарею. Для зарядки батареи используйте зарядное устройство и сетевой шнур, прилагаемые в комплекте.

Зарядка батареи

Индикатор зарядного устройства/адаптера (светодиод) горит красным светом во время зарядки батареи, и зеленым – если батарея полностью заряжена. Приблизительное время перезарядки: 2–3 часа.

Замена батареи

После нескольких сотен циклов зарядки-разрядки аккумуляторные батареи теряют часть зарядной емкости. Подробнее об установке и замене аккумуляторной батареи см. в разделах «Литий-ионная аккумуляторная батарея» на стр. 37 и «Щелочные батареи» на стр. 38.

Утилизация батарей

Утилизация батарей должна производиться надлежащим образом, в соответствии с местными законами и правилами по ликвидации опасных отходов (см. раздел «Важная информация. Ознакомьтесь перед использованием оборудования.» на стр. 5).

8.2 Преобразователь: технический уход и диагностика

Преобразователи BondMaster 600 отличаются высокой прочностью и при бережном обращении имеют продолжительный срок службы:

- Не роняйте преобразователь на твердые поверхности
- Не ударяйте преобразователь о другие предметы
- Резонансный преобразователь должен всегда использоваться с тефлоновым покрытием. Это не только продлит срок службы преобразователя, но и облегчит его использование.
- Регулярно проверяйте и заменяйте стабилизирующие наконечники раздельно-совмещенных ПЭП; особенно в случае использования преобразователей со съемными наконечниками.

Приложение А: Технические характеристики

В данном приложении представлены технические характеристики BondMaster 600.

А.1 Общие характеристики и условия эксплуатации

В Табл. 8 на стр. 223 представлены общие характеристики и условия эксплуатации прибора.

Категория	Параметр	Значение
Корпус	Габариты (ширина × высота × глубина)	236 × 167 × 70 мм
	Bec	1,70 кг с литий-ионным аккумулятором
	Прочие характеристики	Ремешок на запястье (прикреплен к прибору) и этикетка с инструкцией на задней панели прибора

Табл. 8 Общие характеристики и условия эксплуатации

Категория	Параметр	Значение
Условия эксплуатации	Диапазон рабочих температур	от −10 °С до 50 °С
	Температура	С батареями: от 0°С до 50 °С
	хранения	Без батарей: от −20 °С до 70 °С
	Нормы IP	Отвечает требованиям ІР66
	Устойчивость к падению	Метод 516.6, Процедура IV, 26 падений, упаковка для транспортировки (портативное и переносное оборудование)
	Устойчивость к	Метод 516.6, Процедура I,
	ударам	 а) Портативное и переносное оборудование, 6 циклов для каждой оси, 15 г, 11 мс полусинусоила, или
		b) Установочное/стоечное/настольное оборудование, удар 40 g с 3 сторон × 1 раз с каждой стороны.
	Устойчивость к вибрациям	Метод 514.6, Процедура I, Приложение С, Рис. 514.6С5, общее воздействие: 1 час на каждую ось
	Работа во взрывоопасной зоне	Безопасная работа по Классу I, Раздел 2, Группа D, стандарта NFPA 70 [Национальная ассоциация пожарной безопасности], Статья 500, контроль по стандарту MIL-STD-810F, Метод 511.5, Процедура I.
Батареи	Модель	600-BAT-L-2 [U8760058] (Литий-ионная)
	Тип	Перезаряжаемый литий-ионный аккумулятор или щелочные батареи типа АА (в держателе для 8 батарей)
	Температура хранения батарей	От 0 °С до 50 °С при относительной влажности 80 %
	Время зарядки батареи	4 часа при помощи внутреннего зарядного устройства или дополнительного зарядного устройства
	Продолжительность работы батареи	8-9 часов
	Размер батареи (ширина × высота × длина)	Приблизительно 58,9 × 22,3 × 214,6 мм

Табл 8 Общие узрактеристики и условия эксплуатации ((nnada v v ou u o)
табл, о общие характеристики и условия эксплуатации ((npovonkenue)

Категория	Параметр	Значение
Внешний	Постоянный ток	24 В (60 Вт)
источник постоянного	Разъем	Круглый; 2,5 мм диаметр контакта, центральный позитивный
loka	Источник постоянного тока, внешний (рекомендуемая модель)	ЕР-МСА-Х, где X – тип кабеля питания (см. Табл. 18 на стр. 236)
Дисплей	Размер (ширина × высота; диагональ)	117,4 × 88,7 мм; 146,3 мм
	Разрешение	640 × 480 пикселей (VGA)
	Количество цветов	256
	Тип	Цветной трансфлективный ЖК-дисплей VGA (640 × 480 пикселей)
	Углы просмотра	По горизонтали: от –80° до 80° По вертикали: от –80° до 80°
	Режимы экрана	Стандартный или полноэкранный
	Сетки и инструментальные средства	Выбор из 5 сеток (ВЫКЛ., 10 × 10, МЕЛКАЯ, КРУПНАЯ и WEB) и задаваемые пользователем перекрестия на отображаемой плоскости XY
	Режимы (все возможные)	Режимы отображения зависят от модели BondMaster 600 и выбранного режима работы. РЧ (временная развертка сигнала [РЧ] или кривая амплитуды сигнала [ИМПУЛЬС]), импедансная плоскость («плавающая точка XY»), полиэкран (РЧ и XY), ленточная диаграмма (СКАН, представляющий амплитуду и фазу во времени), полиэкран (XY + СКАН), СПЕКТР (амплитуда и фаза в зависимости от частоты) и полиэкран (XY + СПЕКТР).
Прочие характеристи ки	Стандарты или директивы	Стандарт MIL 810G, CE, WEEE, FCC (США), IC (Канада), RoHS (Китай), RCM (Австралия и Новая Зеландия), КСС (Корея)
	Питание	От сети переменного тока: 100–120 В, 200–240 В, 50–60 Гц
	Гарантия	1 год; возможно приобретение дополнительной гарантии (W2-BONDMASTER600 [U8775337])

Табл. 8 Общие характеристики и условия эксплуатации (продолжение)

А.2 Характеристики разъемов ввода/вывода

В Табл. 9 на стр. 226 представлены характеристики входных и выходных сигналов.

Параметр	Значение
USB	Внешний порт USB 2.0
Выход видеосигнала	Стандартный аналоговый выход VGA
Вход/Выход	15-контактный разъем ввода/вывода (вилка), 6 аналоговых выходов, 4 выхода (входа) сигнализации и 2 сигнала кодировщика (для будущего расширения)

Табл. 9 Порты ввода/вывода

В Табл. 10 на стр. 226 представлены все доступные соединения для 15-контактного разъема ввода/вывода. В Табл. 11 на стр. 227 указаны все доступные соединения для 15-контактного выхода VGA.

Табл. 10 1	15-контактный	разъем ввода/	вывода Н	BondMaster 60)0
------------	---------------	---------------	----------	---------------	----

Контак т	Сигнал	Описание
1	AOUT_1	Аналоговый выход 1
2	AOUT_2	Аналоговый выход 2
3	AOUT_3	Аналоговый выход 3
4	AOUT_4	Аналоговый выход 4
5	AOUT_5	Аналоговый выход 5
6	AOUT_6	Аналоговый выход 6
7	GND	Земля
8	VDD	Напряжение +5 В
9	ENCD_INT	Прерывание кодировщика
		(будущее расширение)
10	ENCD_DIR	Направление кодировщика
		(будущее расширение)
11	GND	Земля

Контак т	Сигнал	Описание
12	HW_IO_1	Аппарат. обеспечение Ввод/Вывод 1: выход сигн. 1, общий ввод 1
13	HW_IO_2	Аппарат. обеспечение Ввод/Вывод 2: выход сигн. 2, общий ввод 2
14	HW_IO_3	Аппарат. обеспечение Ввод/Вывод 3: выход сигн. 3, общий ввод 3
15	HW_IO_4	Аппарат. обеспечение Ввод/Вывод 4: выход сигн. 4, общий ввод 4

Табл. 10 15-контактный разъем ввода/вывода BondMaster 600 (продолжение)

Табл. 11 15-контактный разъем VGA BondMaster 600^а

Контак т	Сигнал	Описание
1	VGA_RED	Красный выход VGA
2	VGA_GREEN	Зеленый выход VGA
3	VGA_BLUE	Синий выход VGA
4	NC	Нет соединения
5	GND	Земля
6	GND	Земля
7	GND	Земля
8	GND	Земля
9	NC	Нет соединения
10	GND	Земля
11	NC	Нет соединения
12	NC	Нет соединения
13	LCD_HSYNC	Горизонтальная
		синхронизация
14	LCD_VSYNC	Вертикальная синхронизация
15	NC	Нет соединения

а. Стандартная конфигурация выхода VGA

А.3 Контроль композитных материалов. Технические характеристики

Табл. 12 на стр. 228 содержит технические характеристики дефектоскопа композитных материалов.

Категория	Параметр	Значение
Разъемы	Разъемы ПЭП	11-штырьковый Fischer
	Кол-во входных разъемов для ПЭП	1
Характеристики	Типы преобразователей	Раздельно-совмещенные (Р-С), МІА (анализ механического импеданса) и резонансные ПЭП. BondMaster 600 полностью совместим с преобразователями PowerLink, а также с преобразователями и комплектующими других производителей.
	Усиление	от 0 до 100 дБ, с шагом 0,1 или 1 дБ. Некоторые режимы имеют ограничения в пределах данного диапазона.
	Фазовый сдвиг	от 0° до 359,9° с шагом 0,1° или 1°
	Сканирование	от 0,520 до 40 сек. Некоторые режимы имеют ограничения в пределах данного диапазона.
	Фильтр нижних частот	От 6 до 300 Гц. Некоторые режимы имеют ограничения в пределах данного диапазона.
	Возбуждение ПЭП	НИЗКОЕ, СРЕДНЕЕ и ВЫСОКОЕ.
	Послесвечение	от 0,1 до 10 сек.
	Очистка экрана	от 0,1 до 60 сек.

Табл. 12 🛛	Гехнические ха	рактеристики	дефектоскопа
------------	----------------	--------------	--------------

А.4 Характеристики Р-С ПЭП в режиме излучения тонального сигнала и качающейся частоты

В Табл. 13 на стр. 229 представлены характеристики раздельно-совмещенного (P-C) ПЭП в режиме излучения тонального сигнала и качающейся частоты.

Категория	Параметр	Значение	
Р-С ПЭП в режиме излучения тонального сигнала	Режимы отображения (клавиша RUN)	РЧ (временная развертка сигнала РЧ или кривая амплитуды сигнала ИМПУЛЬС), импедансная плоскость (плавающая точка ХҮ), полиэкран (РЧ и ХҮ), ленточная диаграмма (СКАН, амплитуда и фаза во времени), полиэкран (ХҮ + СКАН)	
	Диапазон частоты	от 1 до 50 кГц	
	Усиление	РЧ сигнал (необработанный сигнал): от 0 до 70 дБ, с шагом 0,1 дБ или 1 дБ. Дополнительный диапазон (от 0 до 60 дБ) доступен в режиме плавающей точки ХҮ.	
	Ширина	От 360 мкс до 10 мс, с шагом 50 мкс	
	Строб	от 10 до 7920 мкс, с шагом 10 мкс. Новый режим АВТО строба для автоматического обнаружения максимальной амплитуды РЧ сигнала.	
	Циклы	От 1 до 10, настраиваемые с шагом в 1 цикл	
	Частота повторения импульсов	От 5 до 500 повторений в секунду, с шагом регулирования 5 повт/сек	
	Регистрация точек	До 25 задаваемых пользователем точек	

Табл. 13 Характеристики Р-С ПЭП в режиме излучения тонального сигнала и качающейся частоты

Табл. 13 Характеристики Р-С ПЭП в режиме излучения тонального сигнала
и качающейся частоты (продолжение)

Категория	Параметр	Значение
Р-С режим (Качающаяся частота)	Режимы отображения (клавиша RUN)	Импедансная плоскость (плавающая точка XY), СПЕКТР (амплитуда и фаза в зависимости от частоты) и полиэкран (XY + СПЕКТР)
	Диапазон частоты	От 5 до 100 кГц
	Усиление	От 0 до 60 дБ, с шагом настройки 0,1 дБ
	Частота развертки	Регулируемая: НИЗКАЯ, СРЕДНЯЯ или ВЫСОКАЯ
	Отслеживание частоты	До 2-х настраиваемых курсоров для управления двумя частотами

А.5 Характеристики режима MIA и резонансного режима

В Табл. 14 на стр. 230 представлены характеристики режима MIA (анализ механического импеданса) и резонансного режима.

Категория	Параметр	Значение
Анализ механического импеданса	Режимы отображения (клавиша RUN)	Импедансная плоскость (плавающая точка XY), ленточная диаграмма (или СКАН, представляющая амплитуду и фазу во времени), полиэкран (XY + СКАН)
	Мастер калибровки	Меню Калибровка определяет оптимальную частоту для приложения, на основе результатов «BAD PART» (дефектная зона) и «GOOD PART» (бездефектная зона)
	Диапазон частоты	От 2 до 50 кГц
	Усиление	От 0 до 100 дБ, с шагом 0,1 дБ
	Фильтр нижних частот	От 6 до 500 Гц.
	Регистрация точек	До 25 задаваемых пользователем точек

Табл. 14 Характеристики резонансного и МІА режимов

Категория	Параметр	Значение
Резонансный метод	Режимы отображения (клавиша RUN)	Импедансная плоскость (плавающая точка XY), ленточная диаграмма (или СКАН, представляющая амплитуду и фазу во времени), полиэкран (XY + СКАН)
	Мастер калибровки	Меню Калибровка определяет оптимальную частоту на основе ответного сигнала ПЭП
	Диапазон частоты	От 1 до 500 кГц
	Усиление	От 0 до 60 дБ, с шагом настройки 0,1 дБ
	Фильтр нижних частот	От 10 до 500 Гц
	Регистрация точек	До 25 задаваемых пользователем точек

Табл. 14 Характеристики резонансного и МІА режимов (продолжение)

А.6 Сигнализации, разъемы для подключения и оперативная память

В Табл. 15 на стр. 231 представлены характеристики сигнализации, подключений и памяти.

Категория	Параметр	Значение
Сигнализации	Кол-во	3 сигнализации по выбору
	Типы сигнализации	Тип сигнализации зависит от модели BondMaster 600 и выбранного режима работы. Сигнализация РЧ (временной ряд), ПРЯМ (прямоугольная), ПОЛЯР (полярная), СЕКТОР (секторная), СКАН (временная развертка) и СПЕКТР в зависимости от выбора АМПЛИТУЛЫ или ФАЗЫ.

Табл. 15 Сигнализации, разъемы и оперативная память

Категория	Параметр	Значение
Возможности подключения и память	Программное обеспечение ПК	Программное обеспечение BondMaster PC включено в базовый комплект BondMaster 600. BondMaster PC позволяет просматривать сохраненные файлы и печатать отчеты.
	Встроенная функция просмотра	Да, с помощью ручки регулятора
	Хранение данных	500 файлов
	Опорный сигнал	Текущий или вызванный из памяти

Табл. 15 Си	игнализации, разъемы и оперативная памят	ь (продолжение)
-------------	--	-----------------

А.7 Характеристики интерфейса

Табл. 16 на стр. 232 представляет технические характеристики интерфейса.

Категория	Параметр	Значение
Интерфейс	Языки интерфейса	Английский, испанский, французский, немецкий, итальянский, японский, китайский, русский, португальский, польский, голландский, чешский, венгерский, шведский и норвежский.
	Цвета	8 цветовых схем, используемых в зависимости от условий освещения и предпочтений пользователя

Табл. 16 Характеристики интерфейса

Категория	Параметр	Значение
Особенности интерфейса	Режимы прибора	Режим излучения тонального сигнала (РЧ-импульсы), развертка Р-С, анализ механического импеданса (МІА) и резонансный метод
	Структура меню	Одноуровневое меню с экраном Все Настройки для быстрой конфигурации настроек во время работы
	Приложения	Меню Выбор приложения для быстрой конфигурации.
	Отображение показаний в режиме реального времени	Отображаемые показания зависят от модели BondMaster 600 и выбранного режима работы. До 2 значений, характеризующих сигнал (выбор из 4 показаний амплитуды и 1 значения угла).

Табл. 16 Характеристики интерфейса (продолжение)

Приложение В: Комплектующие, запасные части и обновления

В Табл. 17 на стр. 235 — Табл. 20 на стр. 236 указаны идентификационные номера комплектующих, вспомогательных деталей и запасных частей BondMaster 600, а также номера для заказа кабелей питания, утилит обновления, расширенной гарантии и руководства по началу работы с прибором.

Описание	Номер изделия
Нагрудный ремень (4 точки крепления)	EP4/CH [U8140055]
Подставка для дефектоскопа серии 600 (запасная деталь)	600-STAND [U8780296]
Внешний адаптер сигнализации	N600-EXTALM [U8780332]
Кабель VGA длиной 1,52 м (для серии 600)	600-C-VGA-5 [U8780298]
Коммуникационный кабель HD15, гнездо, односторонний, длиной 1,83 м	DSUB-HD15-6 [U8780333]
Защитная пленка на дисплей для приборов серии 600 (10 шт.)	600-DP [U8780297]
Защитная мягкая сумка для комплектующих и прибора серии 600 (с ручкой регулятора)	600-SC-K [U8780334]
Внешнее зарядное устройство (пользователь должен выбрать кабель питания)	ЕРХТ-ЕС-Х, где Х обозначает тип кабеля питания (см. Табл. 18 на стр. 236)
Наплечный ремень	3319871 [U8906253]

Табл. 17 Комплектующие, вспомогательные детали и запасные части

Типы кабелей (Х)	Номер для заказа
А = Австралия	U8840005
В = Бразилия	U8769007
С = Китай	U8769008
D = Дания	U8840011
Е = Европа	U8840003
I = Италия	U8840009
J = Кабель питания PSE для Японии	U8908649
К = Великобритания	U8840007
Р = Индия, Пакистан, ЮАР и Гонконг	U8840013
S = Южная Корея	U8769009
U = Соединенные Штаты Америки и Канада	U8840015

Табл. 18 Кабели питания для ЕР-МСА-Х и ЕРХТ-ЕС-Х

Табл. 19 Обновление и гарантия

Описание	Номер для заказа
Расширенная гарантия BondMaster 600 (1 дополнительный год), включая калибровку (доступна не во всех странах)	W2-BONDMASTER600 [U8775337]
Обновление В600 на В600М, включая кабель для резонансного преобразователя	B600-UPG-M [U8670219]

Табл. 20 Руководство по началу работы — Все языки

Описание	Номер для заказа
Руководство по началу работы В600 на китайском языке	DMTA-10044-01ZH [U8670211]
Руководство по началу работы В600 на немецком языке	DMTA-10044-01DE [U8670212]
Руководство по началу работы В600 на английском языке	DMTA-10044-01EN [U8030413]
Руководство по началу работы В600 на французском языке	DMTA-10044-01FR [U8670213]

Описание	Номер для заказа
Руководство по началу работы В600 на итальянском языке	DMTA-10044-01IT [U8670214]
Руководство по началу работы В600 на японском языке	DMTA-10044-01JA [U8670215]
Руководство по началу работы В600 на русском языке	DMTA-10044-01RU [U8670216]
Руководство по началу работы В600 на испанском языке	DMTA-10044-01ES [U8670217]
Руководство по началу работы В600 на португальском языке	DMTA-10044-01PT [U8670218]

Табл. 20	Руководство по начал	у работы —	Все языки	(продолжение)
	2 17			

Список иллюстраций

Рис. і-1	Паспортная табличка на задней панели прибора	. 1
Рис. і-2	Расположение серийного номера прибора	. 2
Рис. і-3	Предупреждающий знак	. 2
Рис. і-4	BondMaster 600	19
Рис. 1-1	Содержимое кейса	23
Рис. 2-1	Схема подключений BondMaster 600	28
Рис. 2-2	Разъемы в верхней части прибора	29
Рис. 2-3	Разъемы ввода/вывода	30
Рис. 2-4	Разъемы I/O и VGA OUT	31
Рис. 2-5	Расположение кнопки и индикатора питания BondMaster 600	32
Рис. 2-6	Индикатор питания на передней панели прибора	32
Рис. 2-7	Подключение зарядного устройства/адаптера	33
Рис. 2-8	Подключение кабеля питания	34
Рис. 2-9	Аккумуляторный отсек	36
Рис. 2-10	Извлечение литий-ионной аккумуляторной батареи	38
Рис. 2-11	Держатель щелочных батарей	39
Рис. 2-12	Установка карты памяти microSD	40
Рис. 2-13	Дефектоскоп BondMaster 600 — Передняя панель	41
Рис. 2-14	Дефектоскоп BondMaster 600 — Задняя панель	42
Рис. 2-15	Передняя панель BondMaster 600 — Клавиши и ручка регулятора	43
Рис. 2-16	Английская клавиатура BondMaster 600	44
Рис. 2-17	Международная клавиатура BondMaster 600	44
Рис. 2-18	Китайская клавиатура BondMaster 600	45
Рис. 2-19	Японская клавиатура BondMaster 600	45
Рис. 2-20	Расположение разъема PROBE	49
Рис. 2-21	Разъем ввода/вывода (I/O) и выход VGA	50
Рис. 2-22	Слот для карты памяти microSD и порт USB	51
Рис. 2-23	Подставка BondMaster 600	53
Рис. 3-1	Наклейка-инструкция с описанием основных функций клавиатуры	55
Рис. 3-2	Выбор приложения в меню настроек	56

Рис. 3-3	Экран распознавания PowerLink	56
Рис. 3-4	Экран измерений	58
Рис. 3-5	Передняя панель BondMaster 600 и экран измерений	59
Рис. 3-6	Меню ВСЕ НАСТРОЙКИ	61
Рис. 3-7	Пример LIVE AMPL, LIVE VERT, LIVE HORZ и LIVE ANGL	63
Рис. 3-8	Пример VOLTS P-P	64
Рис. 4-1	Экран СИСТЕМНЫЕ НАСТРОЙКИ	68
Рис. 4-2	Перекрестие и нулевая точка	72
Рис. 5-1	Экран распознавания PowerLink	73
Рис. 5-2	Элементы управления BondMaster 600	74
Рис. 5-3	ОТОБРАЖ РЧ	78
Рис. 5-4	Главное меню РС (РЧ)	79
Рис. 5-5	Режим Р-С развертки по частоте	82
Рис. 5-6	Отображение в режиме MIA	86
Рис. 5-7	Резонансный режим	87
Рис. 5-8	Настройка РЕЖИМ ОТОБРАЖЕНИЯ	90
Рис. 5-9	Сохраненные точки	92
Рис. 5-10	Мелкий (слева) и крупный (справа) шаги настройки ОЧИСТ.ЭКР	94
Рис. 5-11	Настройка порога срабатывания сигнализации	98
Рис. 5-12	Настройка ВЫДЕРЖКИ сигнализации	99
Рис. 5-13	Настройка ЗВУКОВОГО СИГНАЛА	99
Рис. 5-14	Настройка ВЫДЕРЖКИ сигнализации в режиме РС РАЗВ	102
Рис. 5-15	Настройка ЗВУКОВОГО СИГНАЛА в режиме РС РАЗВ	102
Рис. 5-16	Настройка формы ПРЯМ сигнализации в режиме РС РАЗВ	104
Рис. 5-17	Настройка формы СЕКТОР. сигнализации в режиме РС РАЗВ 1	105
Рис. 5-18	Настройка формы КРУГ. сигнализации в режиме РС РАЗВ	106
Рис. 5-19	Настройка ВЫДЕРЖКИ сигнализации режима МІА	108
Рис. 5-20	Настройка ЗВУКОВОГО СИГНАЛА в режиме МІА	108
Рис. 5-21	Настройка ВЫДЕРЖКИ сигнализации в РЕЗОН. режиме	110
Рис. 5-22	Настройка ЗВУКОВОГО СИГНАЛА в РЕЗОН. режиме	110
Рис. 5-23	Текстовый редактор меню ДИСПЕТЧЕР ФАЙЛОВ и кнопки	
	редактирования	114
Рис. 5-24	Меню ВЫБР.ПРИЛ.	116
Рис. 5-25	Меню ВСЕ НАСТРОЙКИ (первый из двух экранов)	117
Рис. 5-26	Меню ПАРОЛЬ	118
Рис. 5-27	Меню ИНФО	120
Рис. 5-28	Экран НОРМАТИВЫ	121
Рис. 5-29	Меню СБРОС	124
Рис. 6-1	Материалы для выявления отслоений обшивки в плоских объектах	
	-	127
Рис. 6-2	Приложение для выявления отслоений в КМ с сотовым наполнителе	ем
	(плоск.объекты)	128

129 130 131 132 132 133
130 131 132 132 133
131 132 132 133
132 132 133
132 133
133
133
134
134
135
135
136
137
ной
138
139
140
140
141
142
143
144
144
145
145
146
147
148
149
149
150
150
)
151
152

Рис. 6-37	Материалы для выявления отслоений в металлах — Резонансный	
	режим	153
Рис. 6-38	Приложение для контроля качества клеевых соединений металлов	
	1	154
Рис. 6-39	Экран калибровки САL	155
Рис. 6-40	Регистрация первой точки	156
Рис. 6-41	Регистрация второй точки	156
Рис. 6-42	Настройка УСИЛ для установки положения верхней точки	157
Рис. 6-43	Повторное сканирование зоны дефектов	158
Рис. 6-44	Список всех параметров	159
Рис. 6-45	Материалы для выявления расслоений в композиционных	
	материалах — Резонансный режим	160
Рис. 6-46	Определение качества ламинации многослойных материалов	161
Рис. 6-47	Экран калибровки CAL	162
Рис. 6-48	Регистрация первой точки	163
Рис. 6-49	Регистрация второй точки	163
Рис. 6-50	Регистрация третьей точки	164
Рис. 6-51	Настройка УСИЛ для установки положения самой верхней точки.	164
Рис. 6-52	Повторное сканирование зоны дефектов	165
Рис. 6-53	Альтернативный режим отображения амплитуды и фазы	166
Рис. 6-54	Список всех параметров	166
Рис. 6-55	Материалы для анализа частотных характеристик — Режим Р-С РАЗВЕРТКА	167
Рис. 6-56	Приложение для выявления отслоений в КМ с сотовым	
	наполнителем (конус.объекты)	169
Рис. 6-57	Изображение развертки между двумя делениями	170
Рис. 6-58	Опорный донный сигнал	171
Рис. 6-59	Спектральное отображение частоты (с правой стороны экрана)	172
Рис. 6-60	Трассировка сигнала отслеживания частоты	173
Рис. 6-61	Материалы для определения наилучшей частоты — Режим МІА	174
Рис. 6-62	Приложение для выявления мелких отслоений и	
	отремонтированных участков	175
Рис. 6-63	Сигнал от маленького дефекта	176
Рис. 6-64	Сигнал при сканировании бездефектной зоны	176
Рис. 6-65	Выбор наилучшей рабочей частоты	177
Рис. 6-66	Настройка угла для перемещения точек вверх	178
Рис. 6-67	Настройка УСИЛ для точки сигнала ПЭП «в воздухе»	179
Рис. 6-68	Повторное сканирование зоны дефектов	179
Рис. 7-1	Меню Device (Устройство) BondMaster PC	182
Рис. 7-2	Окно Capture Screen (Сделать снимок)	182
Рис. 7-3	Меню ИНФО	183
Рис. 7-4	Меню UPGRADE (Обновление)	184
Рис. 7-5	Сообщение с указанием, что зарядное устройство не подключено.	184
-----------	---	-----
Рис. 7-6	Сообщение с указанием, что зарядное устройство подключено	185
Рис. 7-7	Меню Utilities (Утилиты обновления)	185
Рис. 7-8	Окно Upgrade Device (Обновить устройство)	186
Рис. 7-9	Файлы на левой панели окна BondMaster PC	187
Рис. 7-10	Меню File (Файл)	187
Рис. 7-11	Выбор Remote Command (Удаленная команда)	188
Рис. 7-12	Меню Device (Устройство) — Issue Command (Подача команды)	189
Рис. 7-13	Окно Issue Command (Подача команды)	189
Рис. 7-14	Окно Remote Command (Удаленная команда)	210
Рис. 7-15	Функции ручки регулятора	211
Рис. 7-16	Команда File Manager (Диспетчер файлов)	212
Рис. 7-17	Окно Manage File (Управление файлом)	212
Рис. 7-18	Окно подтверждения удаления файла (Confirmation)	213
Рис. 7-19	Диалоговое окно Rename (Переименование)	214
Рис. 7-20	Сообщение для подтверждения вызова	214
Рис. 7-21	Команда Unlock Options (Активация опций)	215
Рис. 7-22	Диалоговое окно Unlock Options (Активация опций)	216
Рис. 7-23	Расположение карты памяти microSD	217
Рис. 7-24	Команда Backup (Резервное копирование)	217
Рис. 7-25	Диалоговое окно Backup (Резервное копирование)	218
Рис. 7-26	Диалоговое окно Confirmation для подтверждения начала	
	резервного копирования	218
Рис. 7-27	Диалоговое окно Backup (Резервное копирование)	218
Рис. 7-28	Команда Restore (Восстановление данных)	219
Рис. 7-29	Диалоговое окно Restore (Восстановление данных)	219
Рис. 7-30	Окно Confirmation для подтверждения начала восстановления	
	данных	220
Рис. 7-31	Диалоговое окно Restore (Восстановление данных)	220

Список таблиц

Табл. 1	Паспортная табличка	3
Табл. 2	Наклейка с серийным номером	4
Табл. З	Индикаторы состояния зарядного устройства и уровня заряда батар	еи
		35
Табл. 4	Функции клавиатуры	46
Табл. 5	ХҮ СИГН1 и ХҮ СИГН2 — Настройка ФОРМЫ	. 103
Табл. 6	Типы сброса	. 124
Табл. 7	Удаленные команды BondMaster 600	. 190
Табл. 8	Общие характеристики и условия эксплуатации	. 223
Табл. 9	Порты ввода/вывода	. 226
Табл. 10	15-контактный разъем ввода/вывода BondMaster 600	. 226
Табл. 11	15-контактный разъем VGA BondMaster 600	227
Табл. 12	Технические характеристики дефектоскопа	. 228
Табл. 13	Характеристики Р-С ПЭП в режиме излучения тонального сигнала	N
	качающейся частоты	. 229
Табл. 14	Характеристики резонансного и MIA режимов	. 230
Табл. 15	Сигнализации, разъемы и оперативная память	. 231
Табл. 16	Характеристики интерфейса	. 232
Табл. 17	Комплектующие, вспомогательные детали и запасные части	. 235
Табл. 18	Кабели питания для ЕР-МСА-Х и ЕРХТ-ЕС-Х	. 236
Табл. 19	Обновление и гарантия	. 236
Табл. 20	Руководство по началу работы — Все языки	. 236
	· ·	

Алфавитный указатель

С

СЕ, директивы Европейского сообщества 12 Е

ЕС (Европейское сообщество), маркировка 4

F

FCC (США) 15 Fischer, разъем 2, 42

I

I/O 29 вводы/выводы 30, 31, 42, 49, 50 ICES-001 (Канада) 15

0

Olympus, техническая поддержка 17

Ρ

PDF, экспорт данных 186 PowerLink меню 57 преобразователь 73

R

RCM, знак соответствия 3 RF RUN 97 RoHS 4, 13

U

USB-разъем 29, 30, 40, 51 USB-соединение 181

۷

VGA, выход 30, 31, 42, 49, 50

VGA-разъем 227

w

WEEE, директива 3, 12

Х

ХҮ-отображение 100 меню СИГН 100 ХҮ-СКАН 100

A

Австралия, знак соответствия RCM 3 автоудаление 70 аккумулятор литий-ионный 221 отсек 42 аккумуляторный отсек 35, 42 расположение 36 активация опций 215 анализ механического импеданса 230 анализ частоты, режим развертки 167 аппаратное обеспечение описание 41 особенности 52 характеристики 40

Б

батареи меры предосторожности 10 отсек 35 щелочные 38 безопасность зарядное устройство/адаптер 33 защита органов слуха 11 кабель питания переменного тока 28, 32 меры предосторожности 9 символы 7 совместимость прибора 6

В

важная информация 5 ВАЖНО, сигнальное слово 8 вводы/выводы 29 разъемы 30, 49, 226 вентиляционное отверстие, мембрана 36 ВНИМАНИЕ, сигнальное слово 8 воздействие окружающей среды 54 выбор значения 118 выбор приложения 55 выделенное значение, сохранение 118 выход VGA 227

Г

герметизирующая прокладка 53 главное меню 82

Д

данные, восстановление 218 держатель, щелочные батареи 38 десятичный разделитель 67 дефектоскоп быстрая настройка 57, 117 подставка 52 директива RoHS (Китай) 13 директива WEEE 3, 12 директива ЭМС 14 диспетчер файлов 211 дисплей защита 53 изменение настроек 69 дополнительные опции активация 215

Ε

Европейское сообщество (СЕ) 12 маркировка 4

3

заливка, режим MIA 146 запасные части 235 запуск 55 выбор экрана 71 преобразователи PowerLink 73 зарядное устройство/адаптер 32, 33 индикатор питания 35 подключение 32 защита органов слуха 11 защита от воздействий окружающей среды 54 защита экрана 54 защита, дисплей 53 знак соответствия RCM 3

И

идентификационный ярлык, расположение 1 изменение десятичный разделитель 67 настройки экрана 69 язык 67 индикатор питания зарядное устройство/адаптер 35 индикаторы зарядное устройство 32 питание 32 интерфейс 55 выбор меню 59 технические характеристики 232 экран измерений 57 информация о гарантии 16 источники питания 31

К

карта памяти microSD слот 30, 40, 51 установка 39 клавиши конфигурация 43 меню 47 расположение 32 функциональные 75 клавиши меню 75 клавиши прямого доступа 43, 46, 74 кнопка питания 32 кнопки блокировка 75 питание 75 команды 188 удаленные 190 комиссия по связи Кореи (КСС) 3 комплектующие 235 прибор 22 контроль клеевых соединений 152 контроль композитных материалов 228 контроль, удаленный 209 конфигурация прибора информация 119 корейская комиссия по связи, КСС 14 крепежные винты крышка аккумуляторного отсека 36 крышка аккумуляторного отсека крепежные винты 36 КСС, корейская комиссия по связи 14

Л

литий-ионная батарея установка 37

Μ

маркировка 1 RCM 3 мелкие отслоения, режим MIA 141 мембрана вентиляционное отверстие 3, 36, 42 прокладки 53 меню 77 возбуждение ПЭП 82 все настройки 60, 117 выбор 59 выбор приложения 116 пароль 118 показания в режиме реального времени 62 расширенные настройки 116 цвет 118 меню DISP/DOTS 95 меню DISP/DOTS меню DISP/DOTS режим MIA 95 режим РЕЗОН 96 меню Память 110 меню СИГН 100 режим РС РАЗВ 100 режим РС РЧ 100 меню СИГН.

режим РС РЧ 97 меню Сигнализация режим МІА 107 резонансный режим 109 меры предосторожности батареи 10 безопасность 9 перезаряжаемый аккумулятор 36 металлы клеевые соединения 152 многослойный материал расслоения 159

Η

навигация меню 57 назначение прибора 5 настройка быстрая 57, 117 настройки автоудаление 70 дата 68 меню 60 начальные 67 начальный экран 71 перекрестие 71 расширенные 116 часы 68 яркость экрана 70 начальные установки 67 нормы директива ЭМС 14 нормы IP 54

0

обновление прибор 119 программное обеспечение 183 ОПАСНО, сигнальное слово 7 описание прибора 25 ОСТОРОЖНО, сигнальное слово 8 отсек I/O 42 отслоение общивки объекты конусной формы 137 плоские объекты 126

П

память текстовый редактор 113 характеристики 231 пароль 118 паспортная табличка 3 передняя панель пользовательский интерфейс 41, 42 перекрестие, экран 71 питание, кнопка (клавиша) 75 ПК, программное обеспечение 181 подача команды 188 подключение к ПК 51 подключения 231 подставка 42 подставка, прибор 52 пользовательский интерфейс передняя панель 41, 42 язык 67 порт ввода/вывода технические характеристики 226 постоянный ток, символ 3 предупреждающие знаки высокое напряжение 7 маркировка прибора 4 общие 7 предупреждение высокое напряжение 10 защита органов слуха 11 кабель питания переменного тока 28, 32 модификация запрещена 7 неблагоприятные климатические условия 50, 52 нецелевое использование прибора 5 перезаряжаемый аккумулятор 36 совместимость прибора 6 электрический ток 2, 29, 49 предупреждения общие 9 преобразователь технический уход и диагностика 222 прибор источники питания 31 комплектующие 22 описание 25

сброс настроек 123 технические характеристики 223 прибор, совместимость 6 приложения 126 выбор 55 меню выбора 116 руководство 167 ПРИМЕЧАНИЕ, сигнальное слово 8 примечания сигнальные слова 8 принцип работы 25 проверка, первичная 21 программное обеспечение меню 77 меню PowerLink 57 навигация по меню 57 обновление 183 пользовательский интерфейс 55 программное обеспечение, ПК 181 прокладка 53 прокладка, мембранная 53 процедура контроля 167

Ρ

разблокировка 119 раздельно-совмещенный преобразователь тональные сигналы 229 разработка приложения 167 разъем Fischer 2, 42 разъем питания постоянного тока 29, 42 разъемы I/O, вводы/выводы 30, 31, 42, 49, 50 USB 30, 40, 42, 51 VGA 30, 31, 42, 49, 50 вводы/выводы 30, 49, 226 зарядное устройство/адаптер 32 подключение к компьютеру 51 преобразователи 42, 48 распаковка, коробка 21 расслоения, многослойные материалы 159 расширенные настройки 116 режим MIA 95 главное меню 85 меню Сигнализация 107 режим РС РАЗВ меню СИГН 100

режим РС РАЗВ. 95 режим РС РЧ 100 меню СИГН 100 режим работы 77 режим реального времени отображение показаний 62 режим РЕЗОН 96 режим РС РЧ 88, 100 главное меню 77 резервное копирование 216 резонансный метод 230 резонансный режим главное меню 87 меню Сигнализация 109 ремонт и модификации 6 руководство процедура контроля 167 руководство по эксплуатации 5 ручка регулятора настройка параметров 42, 76 РЧ+ХҮ 100

С

сброс, прибор 124 серийный номер расположение 2 содержание 4 формат 4 сигнализации технические характеристики 231 сигнальные слова безопасность 7 ВАЖНО 8 ВНИМАНИЕ 8 ОПАСНО 7 ОСТОРОЖНО 8 ПРИМЕЧАНИЕ 8 примечания 8 COBET 9 символы 1 CE 4 RCM (Австралия) 3 RoHS (Китай) 4, 13 WEEE 3 безопасность 7 корейский стандарт 3

мембранное вентиляционное отверстие 3 постоянный ток 3 предупреждающие знаки 4 слот, microSD 30, 40 слот, карта памяти microSD 51 СОВЕТ, сигнальное слово 9 совместимость прибора 6 содержимое упаковки 22 соединение, USB 181 стандарты FCC (США) 15 ICES-001 (Канада) 15

T

текстовый редактор памяти 113 техника безопасности неблагоприятные климатические условия 50, 52 сигнальные слова 7 техническая поддержка 17 технические характеристики 228 анализ механического импеданса 230 интерфейс 232 общие 223 порт ввода/вывода 226 преобразователь, раздельно-совмещенный 229 режим развертки 229 сигнализации 231 тональные сигналы 229

у

удаленные команды 190 удаленный контроль 209 упаковка 21 содержимое 22 управление, функции 73 условия эксплуатации 223 установка карта памяти microSD 39 литий-ионная батарея 37 щелочные батареи 38 утилизация оборудования 12 утилизация электрического и электронного оборудования 12

Φ

файл, диспетчер 211 функции управления 73

Ц

цвет 118

Щ

щелочные батареи держатель 38 установка 38

Э

экран возможное повреждение 54 яркость 70 экран измерений 57 экранный снимок 77 BondMaster PC 181 экспорт данных, формат PDF 186 электрический ток 29, 49 предупреждение 2 элементы управления дисплей 74 клавиши меню 75 кнопка блокировки 75 кнопка питания 75 передняя панель 74 ручка регулятора 76 функциональные клавиши 75

Я

язык, изменение 67 яркость экрана 70